yolo_box_op.cu 4.8 KB
Newer Older
D
dengkaipeng 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/memory/malloc.h"
D
dengkaipeng 已提交
16
#include "paddle/fluid/operators/detection/yolo_box_op.h"
D
dengkaipeng 已提交
17
#include "paddle/fluid/operators/math/math_function.h"
D
dengkaipeng 已提交
18 19 20 21 22 23 24

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
D
dengkaipeng 已提交
25
__global__ void KeYoloBoxFw(const T* input, const int* imgsize, T* boxes,
D
dengkaipeng 已提交
26 27 28
                            T* scores, const float conf_thresh,
                            const int* anchors, const int n, const int h,
                            const int w, const int an_num, const int class_num,
29 30
                            const int box_num, int input_size, bool clip_bbox,
                            const float scale, const float bias) {
D
dengkaipeng 已提交
31 32
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
D
dengkaipeng 已提交
33
  T box[4];
34
  for (; tid < n * box_num; tid += stride) {
D
dengkaipeng 已提交
35 36 37 38 39 40
    int grid_num = h * w;
    int i = tid / box_num;
    int j = (tid % box_num) / grid_num;
    int k = (tid % grid_num) / w;
    int l = tid % w;

41
    int an_stride = (5 + class_num) * grid_num;
D
dengkaipeng 已提交
42 43 44 45 46 47 48 49 50 51 52 53
    int img_height = imgsize[2 * i];
    int img_width = imgsize[2 * i + 1];

    int obj_idx =
        GetEntryIndex(i, j, k * w + l, an_num, an_stride, grid_num, 4);
    T conf = sigmoid<T>(input[obj_idx]);
    if (conf < conf_thresh) {
      continue;
    }

    int box_idx =
        GetEntryIndex(i, j, k * w + l, an_num, an_stride, grid_num, 0);
D
dengkaipeng 已提交
54
    GetYoloBox<T>(box, input, anchors, l, k, j, h, input_size, box_idx,
55
                  grid_num, img_height, img_width, scale, bias);
D
dengkaipeng 已提交
56
    box_idx = (i * box_num + j * grid_num + k * w + l) * 4;
57
    CalcDetectionBox<T>(boxes, box, box_idx, img_height, img_width, clip_bbox);
D
dengkaipeng 已提交
58 59 60

    int label_idx =
        GetEntryIndex(i, j, k * w + l, an_num, an_stride, grid_num, 5);
61
    int score_idx = (i * box_num + j * grid_num + k * w + l) * class_num;
D
dengkaipeng 已提交
62 63 64
    CalcLabelScore<T>(scores, input, label_idx, score_idx, class_num, conf,
                      grid_num);
  }
D
dengkaipeng 已提交
65 66 67 68 69 70
}

template <typename T>
class YoloBoxOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
D
dengkaipeng 已提交
71
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
72
    auto* img_size = ctx.Input<Tensor>("ImgSize");
D
dengkaipeng 已提交
73 74 75 76 77 78 79
    auto* boxes = ctx.Output<Tensor>("Boxes");
    auto* scores = ctx.Output<Tensor>("Scores");

    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float conf_thresh = ctx.Attr<float>("conf_thresh");
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");
80
    bool clip_bbox = ctx.Attr<bool>("clip_bbox");
81 82
    float scale = ctx.Attr<float>("scale_x_y");
    float bias = -0.5 * (scale - 1.);
D
dengkaipeng 已提交
83 84 85 86 87 88 89 90

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int box_num = boxes->dims()[1];
    const int an_num = anchors.size() / 2;
    int input_size = downsample_ratio * h;

D
dengkaipeng 已提交
91 92
    auto& dev_ctx = ctx.cuda_device_context();
    int bytes = sizeof(int) * anchors.size();
93
    auto anchors_ptr = memory::Alloc(dev_ctx, sizeof(int) * anchors.size());
D
dengkaipeng 已提交
94
    int* anchors_data = reinterpret_cast<int*>(anchors_ptr->ptr());
95
    const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
D
dengkaipeng 已提交
96 97
    const auto cplace = platform::CPUPlace();
    memory::Copy(gplace, anchors_data, cplace, anchors.data(), bytes,
D
dengkaipeng 已提交
98
                 dev_ctx.stream());
D
dengkaipeng 已提交
99

D
dengkaipeng 已提交
100
    const T* input_data = input->data<T>();
D
dengkaipeng 已提交
101
    const int* imgsize_data = img_size->data<int>();
D
dengkaipeng 已提交
102 103 104
    T* boxes_data = boxes->mutable_data<T>({n, box_num, 4}, ctx.GetPlace());
    T* scores_data =
        scores->mutable_data<T>({n, box_num, class_num}, ctx.GetPlace());
D
dengkaipeng 已提交
105 106 107
    math::SetConstant<platform::CUDADeviceContext, T> set_zero;
    set_zero(dev_ctx, boxes, static_cast<T>(0));
    set_zero(dev_ctx, scores, static_cast<T>(0));
D
dengkaipeng 已提交
108

109 110
    int grid_dim = (n * box_num + 512 - 1) / 512;
    grid_dim = grid_dim > 8 ? 8 : grid_dim;
D
dengkaipeng 已提交
111

112
    KeYoloBoxFw<T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
D
dengkaipeng 已提交
113
        input_data, imgsize_data, boxes_data, scores_data, conf_thresh,
114
        anchors_data, n, h, w, an_num, class_num, box_num, input_size,
115
        clip_bbox, scale, bias);
D
dengkaipeng 已提交
116
  }
D
dengkaipeng 已提交
117
};
D
dengkaipeng 已提交
118 119 120 121 122

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
D
dengkaipeng 已提交
123
REGISTER_OP_CUDA_KERNEL(yolo_box, ops::YoloBoxOpCUDAKernel<float>,
D
dengkaipeng 已提交
124
                        ops::YoloBoxOpCUDAKernel<double>);