dataset.py 38.1 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tianshuo78520a 已提交
14
"""This is definition of dataset class, which is high performance IO."""
D
dongdaxiang 已提交
15 16 17 18

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
19
from ..utils import deprecated
D
dongdaxiang 已提交
20
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
21 22 23


class DatasetFactory(object):
24 25
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
26
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
27 28 29
    the default is "QueueDataset".

    Example:
30 31 32 33 34
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

35
    """
D
dongdaxiang 已提交
36

D
dongdaxiang 已提交
37
    def __init__(self):
38
        """ Init. """
D
dongdaxiang 已提交
39 40
        pass

41
    def create_dataset(self, datafeed_class="QueueDataset"):
42
        """
H
hutuxian 已提交
43
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
44
        the default is "QueueDataset".
D
dongdaxiang 已提交
45

46 47 48 49
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
50
        Examples:
51 52 53 54 55
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

56
        """
D
dongdaxiang 已提交
57 58
        try:
            dataset = globals()[datafeed_class]()
59
            return dataset
D
dongdaxiang 已提交
60 61 62 63 64 65
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
66
    """ Base dataset class. """
D
dongdaxiang 已提交
67

D
dongdaxiang 已提交
68
    def __init__(self):
69
        """ Init. """
D
dongdaxiang 已提交
70 71 72 73
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
74
        self.dataset = core.Dataset("MultiSlotDataset")
75
        self.thread_num = 1
J
jiaqi 已提交
76
        self.filelist = []
77
        self.use_ps_gpu = False
D
dongdaxiang 已提交
78 79 80 81 82 83

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

84 85 86 87 88 89
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
90 91

        Args:
92
            pipe_command(str): pipe command
93

D
dongdaxiang 已提交
94 95 96
        """
        self.proto_desc.pipe_command = pipe_command

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    def set_rank_offset(self, rank_offset):
        """
        Set rank_offset for merge_pv. It set the message of Pv.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_rank_offset("rank_offset")

        Args:
            rank_offset(str): rank_offset's name

        """
        self.proto_desc.rank_offset = rank_offset

114 115 116 117 118 119 120 121
    def set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
T
tianshuo78520a 已提交
122
            fea_eval(bool): whether enable fea eval mode to enable slots shuffle.
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

D
dongdaxiang 已提交
159 160 161 162
    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

163 164 165 166 167 168
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
169 170

        Args:
171
            batch_size(int): batch size
D
dongdaxiang 已提交
172 173 174 175

        """
        self.proto_desc.batch_size = batch_size

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    def set_pv_batch_size(self, pv_batch_size):
        """
        Set pv batch size. It will be effective during enable_pv_merge

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pv_batch(128)
        Args:
            pv_batch_size(int): pv batch size

        """
        self.proto_desc.pv_batch_size = pv_batch_size

192
    def set_thread(self, thread_num):
193 194 195
        """
        Set thread num, it is the num of readers.

196 197 198 199 200 201
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
202 203

        Args:
204
            thread_num(int): thread num
205
        """
206
        self.dataset.set_thread_num(thread_num)
207
        self.thread_num = thread_num
208 209

    def set_filelist(self, filelist):
210 211 212
        """
        Set file list in current worker.

213 214 215 216 217 218
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
219 220

        Args:
221
            filelist(list): file list
222
        """
223
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
224
        self.filelist = filelist
225

226 227 228
    def set_input_type(self, input_type):
        self.proto_desc.input_type = input_type

D
dongdaxiang 已提交
229
    def set_use_var(self, var_list):
230 231 232
        """
        Set Variables which you will use.

233 234 235 236 237 238
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
239 240

        Args:
241
            var_list(list): variable list
242
        """
243
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
244
        for var in var_list:
245
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
246 247 248 249
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
250
                slot_var.shape.extend(var.shape)
251
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
252
                slot_var.type = "float"
253
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
254 255 256 257 258 259
                slot_var.type = "uint64"
            else:
                raise ValueError(
                    "Currently, fluid.dataset only supports dtype=float32 and dtype=int64"
                )

260
    def set_hdfs_config(self, fs_name, fs_ugi):
261 262 263
        """
        Set hdfs config: fs name ad ugi

264 265 266 267 268 269
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
270 271

        Args:
272 273
            fs_name(str): fs name
            fs_ugi(str): fs ugi
274
        """
275 276
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    def set_download_cmd(self, download_cmd):
        """
        Set customized download cmd: download_cmd

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_download_cmd("./read_from_afs")

        Args:
            download_cmd(str): customized download command
        """
        self.dataset.set_download_cmd(download_cmd)

293
    def _prepare_to_run(self):
294 295 296 297
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
298 299 300
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
301
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
302 303
        self.dataset.create_readers()

304 305 306 307 308 309 310 311
    def _set_use_ps_gpu(self, use_ps_gpu):
        """
        set use_ps_gpu flag
        Args:
            use_ps_gpu: bool
        """
        self.use_ps_gpu = use_ps_gpu

J
jiaqi 已提交
312 313
    def _finish_to_run(self):
        self.dataset.destroy_readers()
314

D
dongdaxiang 已提交
315 316 317 318
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

319 320 321 322 323 324
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
325 326 327 328 329 330

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

331 332 333 334 335 336
    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass

D
dongdaxiang 已提交
337 338

class InMemoryDataset(DatasetBase):
339 340
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
341 342
    and shuffle data before training.
    This class should be created by DatasetFactory
343 344

    Example:
345
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
346
    """
D
dongdaxiang 已提交
347

348
    @deprecated(since="2.0.0", update_to="paddle.distributed.InMemoryDataset")
D
dongdaxiang 已提交
349
    def __init__(self):
350
        """ Init. """
351 352
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
353
        self.fleet_send_batch_size = None
354
        self.is_user_set_queue_num = False
J
jiaqi 已提交
355
        self.queue_num = None
356 357
        self.parse_ins_id = False
        self.parse_content = False
358 359 360
        self.parse_logkey = False
        self.merge_by_sid = True
        self.enable_pv_merge = False
361
        self.merge_by_lineid = False
362
        self.fleet_send_sleep_seconds = None
363
        self.trainer_num = -1
J
jiaqi 已提交
364

365 366 367
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_feed_type")
368 369 370 371 372 373
    def set_feed_type(self, data_feed_type):
        """
        Set data_feed_desc
        """
        self.proto_desc.name = data_feed_type

374 375 376
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._prepare_to_run")
J
jiaqi 已提交
377 378 379 380 381
    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
382
        if self.thread_num <= 0:
383
            self.thread_num = 1
J
jiaqi 已提交
384 385 386 387
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
388 389
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
390 391 392
        self.dataset.set_parse_logkey(self.parse_logkey)
        self.dataset.set_merge_by_sid(self.merge_by_sid)
        self.dataset.set_enable_pv_merge(self.enable_pv_merge)
J
jiaqi 已提交
393 394 395 396
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

397 398 399 400
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_before_train"
    )
401 402
    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
403 404 405 406
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(thread_num, False)
407 408
        self.dataset.dynamic_adjust_readers_num(thread_num)

409 410 411 412
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_after_train"
    )
413 414
    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
415 416 417 418
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, False)
419 420
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

421 422 423
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_queue_num")
J
jiaqi 已提交
424 425 426 427 428
    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
429
            queue_num(int): dataset output queue num
J
jiaqi 已提交
430 431 432 433 434 435 436 437 438

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
439
        self.is_user_set_queue_num = True
J
jiaqi 已提交
440 441
        self.queue_num = queue_num

442 443 444
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_ins_id")
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    def set_parse_ins_id(self, parse_ins_id):
        """
        Set id Dataset need to parse insid

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_ins_id(True)

        """
        self.parse_ins_id = parse_ins_id

462 463 464
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_content")
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    def set_parse_content(self, parse_content):
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_content(True)

        """
        self.parse_content = parse_content

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    def set_parse_logkey(self, parse_logkey):
        """
        Set if Dataset need to parse logkey

        Args:
            parse_content(bool): if parse logkey or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_logkey(True)

        """
        self.parse_logkey = parse_logkey

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    def _set_trainer_num(self, trainer_num):
        """
        Set trainer num

        Args:
            trainer_num(int): trainer num

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset._set_trainer_num(1)

        """
        self.trainer_num = trainer_num

516 517 518
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_sid")
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    def set_merge_by_sid(self, merge_by_sid):
        """
        Set if Dataset need to merge sid. If not, one ins means one Pv.

        Args:
            merge_by_sid(bool): if merge sid or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_sid(True)

        """
        self.merge_by_sid = merge_by_sid

    def set_enable_pv_merge(self, enable_pv_merge):
        """
        Set if Dataset need to merge pv.

        Args:
            enable_pv_merge(bool): if enable_pv_merge or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_enable_pv_merge(True)

        """
        self.enable_pv_merge = enable_pv_merge

    def preprocess_instance(self):
        """
        Merge pv instance and convey it from input_channel to input_pv_channel. 
        It will be effective when enable_pv_merge_ is True.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()

        """
        self.dataset.preprocess_instance()

    def set_current_phase(self, current_phase):
        """
        Set current phase in train. It is useful for untest.
        current_phase : 1 for join, 0 for update.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.set_current_phase(1)

        """
        self.dataset.set_current_phase(current_phase)

    def postprocess_instance(self):
        """
        Divide pv instance and convey it to input_channel.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()
              exe.train_from_dataset(dataset)
              dataset.postprocess_instance()

        """
        self.dataset.postprocess_instance()

608 609 610 611
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_batch_size"
    )
612
    def set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
J
jiaqi 已提交
613
        """
614
        Set fleet send batch size, default is 1024
J
jiaqi 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
628

629 630 631 632
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_sleep_seconds"
    )
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    def set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_sleep_seconds(2)

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

650 651 652
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_lineid")
653
    def set_merge_by_lineid(self, merge_size=2):
654 655 656 657 658
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
659
            merge_size(int): ins size to merge. default is 2.
660 661 662 663 664 665 666 667 668

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_lineid()

        """
669
        self.dataset.set_merge_by_lineid(merge_size)
670
        self.merge_by_lineid = True
671
        self.parse_ins_id = True
672

673 674 675 676
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_generate_unique_feasigns"
    )
677 678 679 680 681
    def set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num):
        self.dataset.set_generate_unique_feasigns(generate_uni_feasigns)
        self.gen_uni_feasigns = generate_uni_feasigns
        self.local_shard_num = shard_num

682 683 684 685
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._generate_local_tables_unlock"
    )
686 687 688 689 690
    def generate_local_tables_unlock(self, table_id, fea_dim, read_thread_num,
                                     consume_thread_num, shard_num):
        self.dataset.generate_local_tables_unlock(
            table_id, fea_dim, read_thread_num, consume_thread_num, shard_num)

691 692 693
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.load_into_memory")
694
    def load_into_memory(self):
695 696 697
        """
        Load data into memory

698 699 700 701 702 703 704 705
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
706
        """
707
        self._prepare_to_run()
708
        self.dataset.load_into_memory()
D
dongdaxiang 已提交
709

710 711 712
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.preload_into_memory")
713
    def preload_into_memory(self, thread_num=None):
J
jiaqi 已提交
714 715 716
        """
        Load data into memory in async mode

717 718 719
        Args:
            thread_num(int): preload thread num

J
jiaqi 已提交
720 721 722 723 724 725 726 727 728 729 730
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
731 732 733 734
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
J
jiaqi 已提交
735 736
        self.dataset.preload_into_memory()

737 738 739
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.wait_preload_done")
J
jiaqi 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()
755
        self.dataset.destroy_preload_readers()
J
jiaqi 已提交
756

757 758 759
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.local_shuffle")
D
dongdaxiang 已提交
760
    def local_shuffle(self):
761 762 763
        """
        Local shuffle

764 765 766 767 768 769 770 771 772
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
773
        """
774
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
775

776 777 778
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.global_shuffle")
779
    def global_shuffle(self, fleet=None, thread_num=12):
780 781
        """
        Global shuffle.
782 783 784
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
785

786
        Examples:
787 788 789 790 791 792 793 794 795
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
796 797

        Args:
798
            fleet(Fleet): fleet singleton. Default None.
799
            thread_num(int): shuffle thread num. Default is 12.
800

801
        """
802
        if fleet is not None:
X
xujiaqi01 已提交
803
            fleet._role_maker.barrier_worker()
804 805
            if self.trainer_num == -1:
                self.trainer_num = fleet.worker_num()
806
        if self.fleet_send_batch_size is None:
807 808 809
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
810
        self.dataset.register_client2client_msg_handler()
811
        self.dataset.set_trainer_num(self.trainer_num)
J
jiaqi 已提交
812
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
813
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
814
        if fleet is not None:
X
xujiaqi01 已提交
815
            fleet._role_maker.barrier_worker()
816
        self.dataset.global_shuffle(thread_num)
817
        if fleet is not None:
X
xujiaqi01 已提交
818
            fleet._role_maker.barrier_worker()
819 820 821
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
X
xujiaqi01 已提交
822
            fleet._role_maker.barrier_worker()
D
dongdaxiang 已提交
823

824 825 826
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.release_memory")
827 828
    def release_memory(self):
        """
829 830
        :api_attr: Static Graph
        
831 832
        Release InMemoryDataset memory data, when data will not be used again.

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

848 849
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
850

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    def get_pv_data_size(self):
        """
        Get memory data size of Pv, user can call this function to know the pv num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Returns:
            The size of memory pv data.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_pv_data_size()

        """
        return self.dataset.get_pv_data_size()

875 876 877
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_memory_data_size")
878 879 880 881 882 883 884 885 886 887 888 889 890 891
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

892 893 894 895 896 897 898 899 900 901
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
902 903 904 905 906 907 908

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
909 910
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
911 912 913
            return global_data_size[0]
        return local_data_size[0]

914 915 916
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_shuffle_data_size")
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

932 933 934 935 936 937 938 939 940 941 942
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
943 944 945 946 947 948 949

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
950 951
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
952 953 954
            return global_data_size[0]
        return local_data_size[0]

X
xjqbest 已提交
955

D
dongdaxiang 已提交
956
class QueueDataset(DatasetBase):
957 958 959
    """
    QueueDataset, it will process data streamly.

960 961 962 963 964 965
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

966
    """
D
dongdaxiang 已提交
967

D
dongdaxiang 已提交
968
    def __init__(self):
969
        """
D
dongdaxiang 已提交
970 971
        Initialize QueueDataset
        This class should be created by DatasetFactory
972
        """
973
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
974
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
975

976 977 978
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.QueueDataset._prepare_to_run")
979 980 981 982 983 984 985 986 987 988 989 990 991 992
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_readers()

X
xujiaqi01 已提交
993
    def local_shuffle(self):
994
        """
995
        Local shuffle data.
D
dongdaxiang 已提交
996

D
dongdaxiang 已提交
997 998
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
999 1000 1001 1002 1003 1004 1005 1006

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

1007 1008 1009
        Raises:
            NotImplementedError: QueueDataset does not support local shuffle

1010
        """
D
dongdaxiang 已提交
1011 1012 1013
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
1014

1015
    def global_shuffle(self, fleet=None):
1016
        """
1017 1018
        Global shuffle data.

D
dongdaxiang 已提交
1019 1020
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1021

1022 1023 1024
        Args:
            fleet(Fleet): fleet singleton. Default None.

1025 1026 1027 1028 1029 1030 1031 1032
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

1033 1034 1035
        Raises:
            NotImplementedError: QueueDataset does not support global shuffle

1036
        """
D
dongdaxiang 已提交
1037 1038 1039
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1040 1041 1042 1043 1044


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
1045 1046 1047 1048 1049 1050

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
H
hutuxian 已提交
1051 1052 1053 1054
    """

    def __init__(self):
        """
1055 1056
        Initialize FileInstantDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1057 1058 1059 1060 1061 1062
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
1063 1064
        Local shuffle
        FileInstantDataset does not support local shuffle
H
hutuxian 已提交
1065 1066 1067 1068 1069 1070 1071 1072
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
1073
        FileInstantDataset does not support global shuffle
H
hutuxian 已提交
1074 1075 1076 1077
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
H
hutuxian 已提交
1088
          dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
H
hutuxian 已提交
1089 1090 1091 1092
    """

    def __init__(self):
        """
1093 1094
        Initialize BoxPSDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1095 1096 1097
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)
1098
        self.proto_desc.name = "PaddleBoxDataFeed"
H
hutuxian 已提交
1099

H
hutuxian 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108
    def set_date(self, date):
        """
        Workaround for date
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        self.boxps.set_date(year, month, day)

H
hutuxian 已提交
1109 1110
    def begin_pass(self):
        """
1111
        Begin Pass
H
hutuxian 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120
        Notify BoxPS to load sparse parameters of next pass to GPU Memory 

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              dataset.begin_pass()
        """
H
hutuxian 已提交
1121 1122
        self.boxps.begin_pass()

1123
    def end_pass(self, need_save_delta):
H
hutuxian 已提交
1124
        """
1125
        End Pass
H
hutuxian 已提交
1126 1127 1128 1129 1130 1131
        Notify BoxPS that current pass ended 
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
1132
              dataset.end_pass(True)
H
hutuxian 已提交
1133
        """
1134
        self.boxps.end_pass(need_save_delta)
H
hutuxian 已提交
1135 1136 1137

    def wait_preload_done(self):
        """
T
tianshuo78520a 已提交
1138
        Wait async preload done
1139
        Wait Until Feed Pass Done
H
hutuxian 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
H
hutuxian 已提交
1150 1151 1152 1153
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
H
hutuxian 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
        Load next pass into memory and notify boxps to fetch its emb from SSD
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
	    """
H
hutuxian 已提交
1164 1165 1166 1167 1168
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
H
hutuxian 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        Begin async preload next pass while current pass may be training
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
        """
H
hutuxian 已提交
1179 1180
        self._prepare_to_run()
        self.boxps.preload_into_memory()
H
hutuxian 已提交
1181 1182 1183 1184 1185

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, True)
        self.dataset.dynamic_adjust_readers_num(thread_num)
1186 1187 1188

    def _dynamic_adjust_after_train(self):
        pass
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        slots_set = set(slots)
        self.boxps.slots_shuffle(slots_set)