unpooling.cu 5.9 KB
Newer Older
S
sweetsky0901 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sweetsky0901 已提交
15
#include "paddle/operators/math/unpooling.h"
S
sweetsky0901 已提交
16 17 18 19 20 21 22 23 24
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T>
__global__ void KernelUnpool2dMax(const int nthreads,
                                  const T* input_data,
S
sweetsky0901 已提交
25
                                  const int* indices_data,
S
sweetsky0901 已提交
26 27 28 29 30 31 32
                                  const int input_height,
                                  const int input_width,
                                  T* output_data,
                                  const int output_height,
                                  const int output_width) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
S
sweetsky0901 已提交
33
  // int output_feasize = output_height * output_width;
S
sweetsky0901 已提交
34 35 36 37
  for (int i = index; i < nthreads; i += offset) {
    int out_offset =  i / (input_height * input_width) \
                      * output_height * output_width;
    int out_index = indices_data[i];
S
sweetsky0901 已提交
38
    // PADDLE_ENFORCE(out_index < output_feasize, "err index in unpooling!");
S
sweetsky0901 已提交
39 40 41 42 43 44
    output_data[out_offset + out_index] = input_data[i];
  }
}
template <typename T>
__global__ void KernelUnpool2dMaxGrad(const int nthreads,
                                      const T* input_data,
S
sweetsky0901 已提交
45
                                      const int* indices_data,
S
sweetsky0901 已提交
46 47 48 49 50 51 52 53 54
                                      const int input_height,
                                      const int input_width,
                                      const T* output_data,
                                      const T* output_grad,
                                      const int output_height,
                                      const int output_width,
                                      T* input_grad) {
    int index = blockIdx.x * blockDim.x + threadIdx.x;
    int offset = blockDim.x * gridDim.x;
S
sweetsky0901 已提交
55
    // int output_feasize = output_height * output_width;
S
sweetsky0901 已提交
56 57 58 59
    for (int i = index; i < nthreads; i += offset) {
        int out_offset =  i / (input_height * input_width) \
                          * output_height * output_width;
        int out_index = indices_data[i];
S
sweetsky0901 已提交
60 61
        // PADDLE_ENFORCE(out_index < output_feasize,
         //                   "err index in unpooling!");
S
sweetsky0901 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        input_grad[i] = output_grad[out_offset + out_index];
    }
}
/*
 * All tensors are in NCHW format.
 */
template <typename T>
class Unpool2d_MaxFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input,
                  const framework::Tensor& indices,
                  framework::Tensor * output) {
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
    const T* input_data = input.data<T>();
S
sweetsky0901 已提交
82
    const int* indices_data = indices.data<int>();
S
sweetsky0901 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    T* output_data = output->mutable_data<T>(context.GetPlace());

    int nthreads =  output->numel();
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelUnpool2dMax<
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(nthreads, input_data, indices_data,
                              input_height, input_width,
                              output_data, output_height, output_width);
  }
};
/*
 * All tensors are in NCHW format.
 */
template <typename T>
class Unpool2d_MaxGradFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input,
S
sweetsky0901 已提交
106
                  const framework::Tensor& indices,
S
sweetsky0901 已提交
107 108
                  framework::Tensor * input_grad,
                  const framework::Tensor& output,
S
sweetsky0901 已提交
109
                  const framework::Tensor& output_grad) {
S
sweetsky0901 已提交
110 111 112 113 114 115 116
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const T* input_data = input.data<T>();
S
sweetsky0901 已提交
117
    const int* indices_data = indices.data<int>();
S
sweetsky0901 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
    int nthreads =  output.numel();
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelUnpool2dMaxGrad<
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
                              nthreads, input_data, indices_data,
                              input_height, input_width,
                              output_data, output_grad_data,
                              output_height, output_width,
                              input_grad_data);
  }
};

template class Unpool2d_MaxGradFunctor<platform::GPUPlace, float>;
template class Unpool2d_MaxGradFunctor<platform::GPUPlace, double>;

template class Unpool2d_MaxFunctor<platform::GPUPlace, float>;
template class Unpool2d_MaxFunctor<platform::GPUPlace, double>;

}  // namespace math
}  // namespace operators
}  // namespace paddle