operator.h 13.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51

M
minqiyang 已提交
52 53
constexpr size_t kGradVarSuffixSize = 5U;

54
/// Variables with this suffix are supposed to be filled up with zeros.
55
constexpr char kZeroVarSuffix[] = "@ZERO";
56

C
chengduo 已提交
57 58 59
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
60
// define some kernel priority
61
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
62 63
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

64
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
65 66 67 68 69
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
70 71
}

Q
qiaolongfei 已提交
72
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
73 74
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
75

Q
Qiao Longfei 已提交
76
class OperatorBase;
77
class ExecutionContext;
78

Q
Qiao Longfei 已提交
79
/**
X
Xin Pan 已提交
80
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
81 82 83 84 85 86
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
87 88
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
89

Q
Qiao Longfei 已提交
90 91
  virtual ~OperatorBase() {}

92
  /// Executor will call this interface function to Run an op.
93 94
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
95

T
typhoonzero 已提交
96 97 98
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

99 100 101
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
102

103 104
  virtual bool SupportGPU() const { return false; }

105 106
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
107
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
108 109
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
110 111
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
112 113 114
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
115

Y
Yu Yang 已提交
116 117
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
118

119
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
120
  //! Get a input with argument's name described in `op_proto`
121
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
122
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
123
  const std::vector<std::string>& Inputs(const std::string& name) const;
124
  //! Get all inputs variable names
Q
qijun 已提交
125 126
  std::vector<std::string> InputVars() const;

127
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
128
  //! Get a output with argument's name described in `op_proto`
129
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
130 131
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
132
  const std::vector<std::string>& Outputs(const std::string& name) const;
133
  //! Get all outputs variable names
Y
Yu Yang 已提交
134
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
135

136
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
137 138
  virtual void RuntimeInferShape(const Scope& scope,
                                 const platform::Place& place) const {}
139

Q
qiaolongfei 已提交
140
 protected:
Q
Qiao Longfei 已提交
141
  std::string type_;
D
dongzhihong 已提交
142
  // NOTE: in case of OpGrad, inputs_ contains:
143
  // I (Inputs)
D
dongzhihong 已提交
144 145
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
146
  VariableNameMap inputs_;
Y
Yu Yang 已提交
147

D
dongzhihong 已提交
148 149
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
150
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
151
  AttributeMap attrs_;
152 153
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
154 155 156 157

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
158 159
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
160 161
};

162
class ExecutionContext {
Y
Yan Chunwei 已提交
163
 public:
164 165 166
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
167

Q
qiaolongfei 已提交
168 169 170 171
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
172
  template <typename T>
Y
Yu Yang 已提交
173 174
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
175 176
  }

177
  bool HasInput(const std::string& name) const;
178

179
  bool HasOutput(const std::string& name) const;
180

Y
Yu Yang 已提交
181
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
182
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
183 184
  }

Y
Yu Yang 已提交
185
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
186
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
187 188
  }

189
  const Variable* InputVar(const std::string& name) const {
190
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
191
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
192 193
  }

194
  Variable* OutputVar(const std::string& name) const {
195
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
196
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
197 198
  }

199 200
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
201 202
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
203
    res.reserve(names.size());
204 205
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
206 207
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
208
                   });
Y
Yan Chunwei 已提交
209 210 211
    return res;
  }

212
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
213
    auto names = op_.Outputs(name);
214
    std::vector<Variable*> res;
215
    res.reserve(names.size());
216 217
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
218 219
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
220
                   });
Y
Yan Chunwei 已提交
221 222 223
    return res;
  }

224 225
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
226
    auto* var = InputVar(name);
227
    return var == nullptr ? nullptr : &var->Get<T>();
228 229 230 231
  }

  template <typename T>
  T* Output(const std::string& name) const {
232
    auto var = OutputVar(name);
233
    return var == nullptr ? nullptr : var->GetMutable<T>();
234 235 236 237 238 239 240 241
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
242
                   [&](const std::string& sub_name) -> const T* {
243
                     auto var = scope_.FindVar(sub_name);
244
                     return var == nullptr ? nullptr : &var->Get<T>();
245 246 247 248 249
                   });
    return res;
  }

  template <typename T>
250
  std::vector<T*> MultiOutput(const std::string& name) const {
251
    auto names = op_.Outputs(name);
252
    std::vector<T*> res;
253 254
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
255
                   [&](const std::string& sub_name) -> T* {
256
                     auto var = scope_.FindVar(sub_name);
257
                     return var == nullptr ? nullptr : var->GetMutable<T>();
258 259 260 261
                   });
    return res;
  }

262
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
263

Q
QI JUN 已提交
264 265 266 267 268
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

269
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
270
    return device_context_;
Q
qijun 已提交
271
  }
Q
qijun 已提交
272

Q
QI JUN 已提交
273 274 275 276 277 278 279 280
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
281
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
282 283 284
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
285

D
dzhwinter 已提交
286
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
287 288 289 290
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

291
 private:
292 293
  const OperatorBase& op_;
  const Scope& scope_;
294
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
295 296
};

297 298 299 300 301 302 303 304 305 306 307 308 309 310
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
311
class OpKernelBase {
Q
qijun 已提交
312
 public:
Q
qijun 已提交
313
  /**
314
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
315 316
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
317
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
318 319
   */

320
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
321

Y
Yu Yang 已提交
322 323 324 325 326 327 328
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
329 330
};

Y
Yu Yang 已提交
331 332
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
333
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
334
  using OpKernelMap =
Y
yuyang18 已提交
335
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
336

Y
Yu Yang 已提交
337 338
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
339 340
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
341 342 343 344
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
345
  }
Y
Yan Chunwei 已提交
346

347
  bool SupportGPU() const override {
Y
Yu Yang 已提交
348 349 350 351 352
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
353 354
  }

355 356 357
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
358

B
baojun-nervana 已提交
359 360
  void RuntimeInferShape(const Scope& scope,
                         const platform::Place& place) const override;
B
baojun-nervana 已提交
361

Q
qiaolongfei 已提交
362
 protected:
363 364 365 366
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
367 368

 private:
369
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
370
  // same.
371
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
372
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
  Scope* TryTransferData(
      const Scope& scope, const OpKernelType& expected_kernel_key,
      std::vector<std::string>* transfered_inplace_vars) const;

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
387 388
};

Y
Yu Yang 已提交
389 390
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
391 392
}  // namespace framework
}  // namespace paddle