unary_kernel.cc 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/sparse/unary_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/sparse/impl/unary_grad_kernel_impl.h"
#include "paddle/phi/kernels/sparse/impl/unary_kernel_impl.h"

namespace phi {
namespace sparse {

template <typename T, typename Context>
Z
zhangkaihuo 已提交
28
void DivScalarCooKernel(const Context& dev_ctx,
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
                        const SparseCooTensor& x,
                        float scalar,
                        SparseCooTensor* out) {
  EmptyLikeCooKernel<T, Context>(dev_ctx, x, out);

  auto eigen_out =
      phi::EigenVector<T>::Flatten(*(out->mutable_non_zero_elements()));
  auto eigen_x = phi::EigenVector<T>::Flatten(x.non_zero_elements());
  auto& dev = *dev_ctx.eigen_device();

  phi::funcs::EigenDiv<std::decay_t<decltype(dev)>, T>::Eval(
      dev, eigen_out, eigen_x, static_cast<T>(scalar));
}

template <typename T, typename Context>
Z
zhangkaihuo 已提交
44
void DivScalarCsrKernel(const Context& dev_ctx,
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
                        const SparseCsrTensor& x,
                        float scalar,
                        SparseCsrTensor* out) {
  EmptyLikeCsrKernel<T, Context>(dev_ctx, x, out);

  auto eigen_out =
      phi::EigenVector<T>::Flatten(*(out->mutable_non_zero_elements()));
  auto eigen_x = phi::EigenVector<T>::Flatten(x.non_zero_elements());
  auto& dev = *dev_ctx.eigen_device();

  phi::funcs::EigenDiv<std::decay_t<decltype(dev)>, T>::Eval(
      dev, eigen_out, eigen_x, static_cast<T>(scalar));
}

}  // namespace sparse
}  // namespace phi

#define PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(name, prefix)          \
  PD_REGISTER_KERNEL(name##_coo,                                   \
                     CPU,                                          \
                     ALL_LAYOUT,                                   \
                     phi::sparse::prefix##CooKernel,               \
                     float,                                        \
                     double) {                                     \
    kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); \
  }                                                                \
                                                                   \
  PD_REGISTER_KERNEL(name##_csr,                                   \
                     CPU,                                          \
                     ALL_LAYOUT,                                   \
                     phi::sparse::prefix##CsrKernel,               \
                     float,                                        \
                     double) {                                     \
    kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); \
  }

PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(sin, Sin)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(tan, Tan)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(asin, Asin)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(atan, Atan)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(sinh, Sinh)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(tanh, Tanh)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(asinh, Asinh)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(atanh, Atanh)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(sqrt, Sqrt)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(square, Square)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(log1p, Log1p)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(relu, Relu)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(abs, Abs)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(pow, Pow)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(scale, Scale)
96 97 98
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(expm1, Expm1)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(relu6, Relu6)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(leaky_relu, LeakyRelu)
99

Z
zhangkaihuo 已提交
100
PD_REGISTER_KERNEL(divide_scalar_coo,
101 102
                   CPU,
                   ALL_LAYOUT,
Z
zhangkaihuo 已提交
103
                   phi::sparse::DivScalarCooKernel,
104 105 106 107 108
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

Z
zhangkaihuo 已提交
109
PD_REGISTER_KERNEL(divide_scalar_csr,
110 111
                   CPU,
                   ALL_LAYOUT,
Z
zhangkaihuo 已提交
112
                   phi::sparse::DivScalarCsrKernel,
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);
}

PD_REGISTER_KERNEL(cast_coo,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::CastCooKernel,
                   float,
                   double,
                   int8_t,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t,
                   bool) {}

PD_REGISTER_KERNEL(cast_csr,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::CastCsrKernel,
                   float,
                   double,
                   int8_t,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t,
                   bool) {}