test_conv2d_op.py 12.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
D
dzhwinter 已提交
19

20
import paddle.fluid.core as core
21
from op_test import OpTest
22 23


C
chengduoZH 已提交
24 25 26 27 28
def conv2d_forward_naive(input, filter, group, conv_param):
    in_n, in_c, in_h, in_w = input.shape
    out_c, f_c, f_h, f_w = filter.shape
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
29
    sub_out_c = out_c // group
C
chengduoZH 已提交
30

C
chengduoZH 已提交
31 32
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilation']
M
minqiyang 已提交
33 34
    out_h = 1 + (in_h + 2 * pad[0] - (dilation[0] * (f_h - 1) + 1)) // stride[0]
    out_w = 1 + (in_w + 2 * pad[1] - (dilation[1] * (f_w - 1) + 1)) // stride[1]
C
chengduoZH 已提交
35 36
    out = np.zeros((in_n, out_c, out_h, out_w))

武毅 已提交
37 38
    d_bolck_h = (dilation[0] * (f_h - 1) + 1)
    d_bolck_w = (dilation[1] * (f_w - 1) + 1)
C
chengduoZH 已提交
39

C
chengduoZH 已提交
40
    input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], )),
C
chengduoZH 已提交
41 42
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
43 44 45 46 47

    filter_dilation = np.zeros((out_c, f_c, d_bolck_h, d_bolck_w))
    filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
        1]] = filter

C
chengduoZH 已提交
48 49 50
    for i in range(out_h):
        for j in range(out_w):
            for g in range(group):
C
chengduoZH 已提交
51 52
                input_pad_masked = \
                    input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
53 54
                    i * stride[0]:i * stride[0] + d_bolck_h,
                    j * stride[1]:j * stride[1] + d_bolck_w]
C
chengduoZH 已提交
55

C
chengduoZH 已提交
56 57
                f_sub = filter_dilation[g * sub_out_c:(g + 1) *
                                        sub_out_c, :, :, :]
C
chengduoZH 已提交
58
                for k in range(sub_out_c):
C
chengduoZH 已提交
59 60 61
                    out[:, g * sub_out_c + k, i, j] = \
                        np.sum(input_pad_masked * f_sub[k, :, :, :],
                               axis=(1, 2, 3))
C
chengduoZH 已提交
62 63 64 65

    return out


H
hedaoyuan 已提交
66
class TestConv2dOp(OpTest):
67
    def setUp(self):
K
Kexin Zhao 已提交
68
        self.op_type = "conv2d"
69
        self.use_cudnn = False
70
        self.use_cuda = False
71
        self.use_mkldnn = False
72
        self.data_format = "AnyLayout"
K
Kexin Zhao 已提交
73
        self.dtype = np.float32
K
Kexin Zhao 已提交
74
        self.init_kernel_type()
C
chengduoZH 已提交
75
        self.init_group()
C
chengduoZH 已提交
76
        self.init_dilation()
C
chengduoZH 已提交
77
        self.init_test_case()
C
chengduoZH 已提交
78

C
chengduoZH 已提交
79 80 81 82 83
        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }
84

K
Kexin Zhao 已提交
85 86
        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
K
Kexin Zhao 已提交
87
        output = conv2d_forward_naive(input, filter, self.groups,
K
Kexin Zhao 已提交
88 89 90
                                      conv2d_param).astype(self.dtype)

        self.inputs = {
K
Kexin Zhao 已提交
91 92
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
K
Kexin Zhao 已提交
93
        }
H
hedaoyuan 已提交
94
        self.attrs = {
C
chengduoZH 已提交
95 96
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
97
            'groups': self.groups,
98
            'dilations': self.dilations,
99
            'use_cudnn': self.use_cudnn,
100
            'use_mkldnn': self.use_mkldnn,
101
            'data_format': self.data_format
H
hedaoyuan 已提交
102
        }
103 104
        self.outputs = {'Output': output}

105 106 107
    def testcuda(self):
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)
108

H
hedaoyuan 已提交
109
    def test_check_output(self):
110
        place = core.CUDAPlace(0) if self.testcuda() else core.CPUPlace()
111
        self.check_output_with_place(place, atol=1e-5)
H
hedaoyuan 已提交
112

H
hedaoyuan 已提交
113
    def test_check_grad(self):
K
Kexin Zhao 已提交
114 115
        if self.dtype == np.float16:
            return
116
        place = core.CUDAPlace(0) if self.testcuda() else core.CPUPlace()
117 118
        self.check_grad_with_place(
            place, set(['Input', 'Filter']), 'Output', max_relative_error=0.02)
H
hedaoyuan 已提交
119

120
    def test_check_grad_no_filter(self):
K
Kexin Zhao 已提交
121 122
        if self.dtype == np.float16:
            return
123
        place = core.CUDAPlace(0) if self.testcuda() else core.CPUPlace()
124 125 126 127 128
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
            no_grad_set=set(['Filter']))
129 130

    def test_check_grad_no_input(self):
K
Kexin Zhao 已提交
131 132
        if self.dtype == np.float16:
            return
133
        place = core.CUDAPlace(0) if self.testcuda() else core.CPUPlace()
134 135 136 137 138
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
            max_relative_error=0.02,
            no_grad_set=set(['Input']))
139

C
chengduoZH 已提交
140 141 142 143 144
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
145
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
146 147
        self.filter_size = [6, f_c, 3, 3]

C
chengduoZH 已提交
148 149 150
    def init_dilation(self):
        self.dilations = [1, 1]

C
chengduoZH 已提交
151
    def init_group(self):
H
hedaoyuan 已提交
152 153
        self.groups = 1

K
Kexin Zhao 已提交
154 155
    def init_kernel_type(self):
        pass
武毅 已提交
156

H
hedaoyuan 已提交
157

C
chengduoZH 已提交
158 159 160 161 162 163
class TestWithPad(TestConv2dOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
164
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
165 166 167 168 169 170 171 172 173
        self.filter_size = [6, f_c, 3, 3]


class TestWithStride(TestConv2dOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
174
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
175 176 177
        self.filter_size = [6, f_c, 3, 3]


H
hedaoyuan 已提交
178
class TestWithGroup(TestConv2dOp):
C
chengduoZH 已提交
179
    def init_group(self):
H
hedaoyuan 已提交
180 181
        self.groups = 3

武毅 已提交
182

C
chengduoZH 已提交
183 184 185 186 187 188
class TestWith1x1(TestConv2dOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
189
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
190 191 192 193 194 195
        self.filter_size = [6, f_c, 1, 1]

    def init_group(self):
        self.groups = 3


C
chengduoZH 已提交
196 197 198 199 200 201
class TestWithDilation(TestConv2dOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
202
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
203
        self.filter_size = [6, f_c, 3, 3]
C
chengduoZH 已提交
204

C
chengduoZH 已提交
205 206
    def init_dilation(self):
        self.dilations = [2, 2]
C
chengduoZH 已提交
207

C
chengduoZH 已提交
208
    def init_group(self):
C
chengduoZH 已提交
209
        self.groups = 3
武毅 已提交
210

C
chengduoZH 已提交
211

212 213 214 215 216 217
class TestWithInput1x1Filter1x1(TestConv2dOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 1, 1]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
218
        f_c = self.input_size[1] // self.groups
219 220 221 222 223 224
        self.filter_size = [6, f_c, 1, 1]

    def init_group(self):
        self.groups = 3


225
#----------------Conv2dCUDNN----------------
C
chengduoZH 已提交
226

K
Kexin Zhao 已提交
227

C
chengduo 已提交
228 229 230 231 232 233
def create_test_cudnn_class(parent, cls_name):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
234

C
chengduo 已提交
235 236 237
    cls_name = "{0}".format(cls_name)
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
K
Kexin Zhao 已提交
238

K
Kexin Zhao 已提交
239

C
chengduo 已提交
240 241 242 243 244 245
create_test_cudnn_class(TestConv2dOp, "TestPool2DCUDNNOp")
create_test_cudnn_class(TestWithPad, "TestPool2DCUDNNOpCase1")
create_test_cudnn_class(TestWithStride, "TestPool2DCUDNNOpCase2")
create_test_cudnn_class(TestWithGroup, "TestPool2DCUDNNOpCase3")
create_test_cudnn_class(TestWith1x1, "TestPool2DCUDNNOpCase4")
create_test_cudnn_class(TestWithInput1x1Filter1x1, "TestPool2DCUDNNOpCase4")
K
Kexin Zhao 已提交
246

C
chengduo 已提交
247
#----------------Conv2dCUDNN----------------
K
Kexin Zhao 已提交
248

C
chengduoZH 已提交
249

C
chengduo 已提交
250 251 252 253 254 255 256
def create_test_cudnn_fp16_class(parent, cls_name, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConv2DCUDNNFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
武毅 已提交
257

C
chengduo 已提交
258 259 260 261 262
        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)
K
Kexin Zhao 已提交
263

C
chengduo 已提交
264
        def test_check_grad_no_filter(self):
K
Kexin Zhao 已提交
265
            place = core.CUDAPlace(0)
C
chengduo 已提交
266 267 268 269 270 271 272 273
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
                    place, ['Input'],
                    'Output',
                    max_relative_error=0.02,
                    no_grad_set=set(['Filter']))

        def test_check_grad_no_input(self):
K
Kexin Zhao 已提交
274
            place = core.CUDAPlace(0)
C
chengduo 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
                    place, ['Filter'],
                    'Output',
                    max_relative_error=0.02,
                    no_grad_set=set(['Input']))

    cls_name = "{0}".format(cls_name)
    TestConv2DCUDNNFp16.__name__ = cls_name
    globals()[cls_name] = TestConv2DCUDNNFp16


create_test_cudnn_fp16_class(
    TestConv2dOp, "TestPool2DCUDNNFp16Op", grad_check=False)
create_test_cudnn_fp16_class(
    TestWithPad, "TestPool2DCUDNNFp16OpCase1", grad_check=False)
create_test_cudnn_fp16_class(
    TestWithStride, "TestPool2DCUDNNFp16OpCase2", grad_check=False)
create_test_cudnn_fp16_class(
    TestWithGroup, "TestPool2DCUDNNFp16OpCase3", grad_check=False)
create_test_cudnn_fp16_class(
    TestWith1x1, "TestPool2DCUDNNFp16OpCase4", grad_check=False)
create_test_cudnn_fp16_class(
    TestWithInput1x1Filter1x1, "TestPool2DCUDNNFp16OpCase4", grad_check=False)

# -------TestDepthwiseConv
K
Kexin Zhao 已提交
301 302


303 304
class TestDepthwiseConv(TestConv2dOp):
    def init_test_case(self):
305
        self.use_cuda = True
306 307 308 309 310
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
311
        f_c = self.input_size[1] // self.groups
312
        self.filter_size = [3, f_c, 3, 3]
313
        self.op_type = "depthwise_conv2d"
314 315 316 317


class TestDepthwiseConv2(TestConv2dOp):
    def init_test_case(self):
318 319 320 321 322 323 324 325 326 327 328 329 330 331
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [3, f_c, 3, 3]
        self.op_type = "depthwise_conv2d"


class TestDepthwiseConv3(TestConv2dOp):
    def init_test_case(self):
        self.use_cuda = True
332 333 334 335 336
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
337
        f_c = self.input_size[1] // self.groups
338
        self.filter_size = [6, f_c, 3, 3]
339
        self.op_type = "depthwise_conv2d"
340 341


342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
class TestDepthwiseConvWithDilation(TestConv2dOp):
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]
        self.op_type = "depthwise_conv2d"


class TestDepthwiseConvWithDilation2(TestConv2dOp):
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]
        self.op_type = "depthwise_conv2d"


370 371
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
372
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
373 374 375
#     def init_op_type(self):
#         self.op_type = "conv_cudnn"

376 377
if __name__ == '__main__':
    unittest.main()