uniform_random_op_mlu.cc 4.1 KB
Newer Older
J
joeqiao12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/uniform_random_op.h"
F
fwenguang 已提交
16
#include "paddle/fluid/framework/generator.h"
J
joeqiao12 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

template <typename T>
class MLUUniformRandomKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    framework::Tensor *tensor = nullptr;
    auto out_var = ctx.OutputVar("Out");

    std::vector<int64_t> new_shape;
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensorList");
    if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
      if (ctx.HasInput("ShapeTensor")) {
        auto *shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
        new_shape = GetNewDataFromShapeTensor(shape_tensor);
      } else if (list_new_shape_tensor.size() > 0) {
        new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
      }
    }

41 42
    if (out_var->IsType<phi::SelectedRows>()) {
      auto *selected_rows = out_var->GetMutable<phi::SelectedRows>();
J
joeqiao12 已提交
43 44 45
      tensor = selected_rows->mutable_value();
      auto shape = ctx.Attr<std::vector<int64_t>>("shape");
      if (!new_shape.empty()) shape = new_shape;
46
      tensor->Resize(phi::make_ddim(shape));
J
joeqiao12 已提交
47 48 49
      selected_rows->mutable_rows()->reserve(shape[0]);
    } else if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
50
      if (!new_shape.empty()) tensor->Resize(phi::make_ddim(new_shape));
J
joeqiao12 已提交
51 52 53 54 55 56 57 58 59 60
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Expected type of Output(out) in uniform_random_op must be Tensor, "
          "SelectedRows. But got "
          "unsupport type: %s.",
          framework::ToTypeName(out_var->Type())));
    }

    tensor->mutable_data<T>(ctx.GetPlace());
    int64_t size = tensor->numel();
F
fwenguang 已提交
61 62 63 64 65 66 67 68

    Tensor cpu_tensor(tensor->dtype());
    cpu_tensor.Resize(tensor->dims());
    T *data_cpu = cpu_tensor.mutable_data<T>(platform::CPUPlace());

    std::uniform_real_distribution<T> dist(
        static_cast<T>(ctx.Attr<float>("min")),
        static_cast<T>(ctx.Attr<float>("max")));
J
joeqiao12 已提交
69
    unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
F
fwenguang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    auto engine = framework::GetCPURandomEngine(seed);

    for (int64_t i = 0; i < size; ++i) {
      data_cpu[i] = dist(*engine);
    }

    unsigned int diag_num =
        static_cast<unsigned int>(ctx.Attr<int>("diag_num"));
    unsigned int diag_step =
        static_cast<unsigned int>(ctx.Attr<int>("diag_step"));
    auto diag_val = static_cast<T>(ctx.Attr<float>("diag_val"));
    if (diag_num > 0) {
      PADDLE_ENFORCE_GT(
          size, (diag_num - 1) * (diag_step + 1),
          platform::errors::InvalidArgument(
              "ShapeInvalid: the diagonal's elements is equal (num-1) "
              "* (step-1) with num %d, step %d,"
              "It should be smaller than %d, but received %d",
              diag_num, diag_step, (diag_num - 1) * (diag_step + 1), size));
      for (int64_t i = 0; i < diag_num; ++i) {
        int64_t pos = i * diag_step + i;
        data_cpu[pos] = diag_val;
      }
    }

    // copy to MLU
    framework::TensorCopy(
        cpu_tensor, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), tensor);
    ctx.template device_context<paddle::platform::MLUDeviceContext>().Wait();
J
joeqiao12 已提交
100 101 102 103 104 105 106 107
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OP_MLU_KERNEL(uniform_random,
                       paddle::operators::MLUUniformRandomKernel<float>);