elementwise_op_function.h 21.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/transform.h"
20

C
chengduoZH 已提交
21 22
#ifdef __NVCC__
#include <thrust/iterator/iterator_adaptor.h>
C
chengduoZH 已提交
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yu Yang 已提交
24
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
C
chengduoZH 已提交
25 26
#endif

Y
Yi Wang 已提交
27
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/platform/for_range.h"
29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
C
chengduo 已提交
39
 *    x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
40 41
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
C
chengduo 已提交
42
 *    x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 */
inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
                         int& pre, int& n, int& post) {
  pre = 1;
  n = 1;
  post = 1;
  for (int i = 0; i < axis; ++i) {
    pre *= x_dims[i];
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
    n *= y_dims[i];
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    post *= x_dims[i];
  }
}

Q
QI JUN 已提交
65
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
66
class RowwiseTransformIterator;
Q
QI JUN 已提交
67
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
68
class MidWiseTransformIterator;
C
chengduoZH 已提交
69 70

template <typename T>
Q
QI JUN 已提交
71
class RowwiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
72
 public:
C
chengduoZH 已提交
73 74
  RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

Q
QI JUN 已提交
75
  RowwiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
76
    ++i_;
C
chengduoZH 已提交
77 78 79
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
80 81 82
    return *this;
  }

Q
QI JUN 已提交
83 84
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
85
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
86 87
  }

Q
QI JUN 已提交
88 89
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
90
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
91 92 93 94
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
95
 private:
C
chengduoZH 已提交
96 97
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
98
  int64_t n_;
C
chengduoZH 已提交
99 100 101
};

template <typename T>
Q
QI JUN 已提交
102
class MidWiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
103
 public:
C
chengduoZH 已提交
104 105 106
  MidWiseTransformIterator(const T* ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

Q
QI JUN 已提交
107
  MidWiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
108
    ++j_;
C
chengduoZH 已提交
109 110
    if (UNLIKELY(j_ == post_)) {
      ++i_;
C
refine  
chengduoZH 已提交
111
      j_ = 0;
C
chengduoZH 已提交
112 113 114
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
C
chengduoZH 已提交
115
    }
C
chengduoZH 已提交
116 117 118
    return *this;
  }

Q
QI JUN 已提交
119 120
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
121
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
122 123
  }

Q
QI JUN 已提交
124 125
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
126
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
127 128 129 130
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
131
 private:
C
chengduoZH 已提交
132
  const T* ptr_;
C
refine  
chengduoZH 已提交
133
  int64_t i_;
C
chengduoZH 已提交
134 135
  int64_t j_;
  int64_t n_;
C
refine  
chengduoZH 已提交
136
  int64_t post_;
C
chengduoZH 已提交
137 138
};

C
chengduoZH 已提交
139 140
#ifdef __NVCC__
template <typename T>
Q
QI JUN 已提交
141
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
142
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
143
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
144 145
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
146
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
147
      super_t;
C
chengduoZH 已提交
148
  HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
C
chengduoZH 已提交
149 150 151 152 153 154
      : super_t(x), begin_(x), n_(n){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
155
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
156 157 158 159 160
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
161
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
162
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
163
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
164 165
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
166
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
167
      super_t;
C
chengduoZH 已提交
168
  HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
C
chengduoZH 已提交
169 170 171 172 173 174 175
      : super_t(x), begin_(x), n_(n), post_(post){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
176
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
177 178 179 180 181
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

182 183
template <typename Functor, typename T, typename DeviceContext,
          typename OutType = T>
C
chengduoZH 已提交
184 185
class TransformFunctor {
 public:
C
chengduoZH 已提交
186
  TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
Q
QI JUN 已提交
187
                   framework::Tensor* z, const DeviceContext& ctx, Functor func)
C
chengduoZH 已提交
188 189
      : x_(x->data<T>()),
        y_(y->data<T>()),
190
        z_(z->mutable_data<OutType>(ctx.GetPlace())),
C
chengduoZH 已提交
191 192 193 194 195
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
Q
QI JUN 已提交
196
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
197
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
198 199 200
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
201 202 203
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, DeviceContext>(y_, n),
          z_, func_);
C
chengduoZH 已提交
204 205 206
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
207 208 209
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_,
          MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
C
chengduoZH 已提交
210 211
  }

C
chengduoZH 已提交
212
 private:
C
chengduoZH 已提交
213 214
  const T* x_;
  const T* y_;
215
  OutType* z_;
C
chengduoZH 已提交
216
  int64_t nx_;
Q
QI JUN 已提交
217
  const DeviceContext& ctx_;
C
chengduoZH 已提交
218 219 220
  Functor func_;
};

221 222
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
Q
QI JUN 已提交
223
    template <typename DeviceContext, typename T>                              \
224 225 226 227 228 229
    inline void Run(const framework::Tensor* x, const framework::Tensor* y,    \
                    framework::Tensor* z,                                      \
                    const framework::ExecutionContext& ctx) {                  \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
Q
QI JUN 已提交
230 231 232
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_e);                                                  \
233
    }                                                                          \
Q
QI JUN 已提交
234
    template <typename DeviceContext, typename T>                              \
235 236 237 238 239 240 241 242 243 244
    inline void RunBroadCast(const framework::Tensor* x,                       \
                             const framework::Tensor* y, framework::Tensor* z, \
                             const framework::ExecutionContext& ctx, int pre,  \
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
245 246 247
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
248
    }                                                                          \
Q
QI JUN 已提交
249
    template <typename DeviceContext, typename T>                              \
250 251 252 253 254 255 256 257 258 259 260
    inline void RunBroadCast2(const framework::Tensor* x,                      \
                              const framework::Tensor* y,                      \
                              framework::Tensor* z,                            \
                              const framework::ExecutionContext& ctx, int pre, \
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
261 262 263
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
264 265 266
    }                                                                          \
  }

Q
QI JUN 已提交
267
template <class functor, typename DeviceContext, typename T>
268 269 270 271 272 273 274 275 276 277 278
void ElementwiseCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* z = ctx.Output<Tensor>("Out");
  z->mutable_data<T>(ctx.GetPlace());

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
279
                    "Rank of first input must >= rank of second input.");
280

Q
qijun 已提交
281
  if (x_dims == y_dims) {
282
    functor f;
Q
QI JUN 已提交
283
    f.template Run<DeviceContext, T>(x, y, z, ctx);
284 285 286 287 288 289 290 291 292 293 294 295
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor f;
Q
QI JUN 已提交
296
    f.template RunBroadCast<DeviceContext, T>(x, y, z, ctx, pre, n);
297 298 299
    return;
  } else {
    functor f;
Q
QI JUN 已提交
300
    f.template RunBroadCast2<DeviceContext, T>(x, y, z, ctx, pre, n, post);
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    return;
  }
}

#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);

Y
Yu Yang 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
template <typename T, typename DX_OP, typename DY_OP>
struct ElemwiseGradNoBroadcast {
  const T* x_;
  const T* y_;
  const T* out_;
  const T* dout_;

  HOSTDEVICE void operator()(size_t i) {
    if (dx_ != nullptr) {
      dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
    if (dy_ != nullptr) {
      dy_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
  }

  DX_OP dx_op_;
  DY_OP dy_op_;
  T* dx_;
  T* dy_;
};

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out,
                                      const T* dout, int h, int w, DX_OP dx_op,
                                      DY_OP dy_op, T* dx, T* dy) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int x_offset = i * w + j;
      if (dx != nullptr) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      if (dy != nullptr) {
        T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        if (i == 0) {
          dy[j] = tmp;
        } else {
          dy[j] += tmp;
        }
      }
    }
  }
}
#ifdef __NVCC__
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast1CUDAKernel(
    const T* x, const T* y, const T* out, const T* dout, int h, int w,
    DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) {
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
C
chengduoZH 已提交
368
  T val = 0;
Y
Yu Yang 已提交
369 370 371 372 373 374 375

  do {
    int x_offset = i * w + j;
    if (dx) {
      dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }
    if (dy) {
C
chengduoZH 已提交
376
      val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
Y
Yu Yang 已提交
377 378 379 380 381
    }
    i += ELEMWISE_MAX_BLOCK_DIM;
  } while (i < h);

  if (dy) {
C
chengduoZH 已提交
382
    val = platform::ReduceSum(val, tid);
Y
Yu Yang 已提交
383
    if (threadIdx.x == 0) {
C
chengduoZH 已提交
384
      dy[j] = val;
Y
Yu Yang 已提交
385 386 387 388 389 390 391 392 393 394 395
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast1CUDA(cudaStream_t stream, const T* x,
                                       const T* y, const T* out, const T* dout,
                                       int h, int w, DX_OP dx_op, DY_OP dy_op,
                                       T* dx, T* dy) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
C
chengduoZH 已提交
396 397
  ElemwiseGradBroadcast1CUDAKernel<<<gird_size, block_size, 0, stream>>>(
      x, y, out, dout, h, w, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
}

#endif

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast2CPU(const T* x, const T* y, const T* out,
                                      const T* dout, int pre, int n, int post,
                                      DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int x_offset = i * n * post + j * post + k;
        if (dx != nullptr) {
          dx[x_offset] =
              dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        }
        if (dy != nullptr) {
          T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          if (i == 0 && k == 0) {
            dy[j] = tmp;
          } else {
            dy[j] += tmp;
          }
        }
      }
    }
  }
}

#ifdef __NVCC__
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast2CUDAKernel(
    const T* x, const T* y, const T* out, const T* dout, int pre, int n,
    int post, DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduoZH 已提交
435
  T val = 0;
Y
Yu Yang 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449
  int ttid = tid;

  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int x_offset = i * n * post + j * post + k;

    if (dx != nullptr) {
      dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }

    if (dy != nullptr) {
C
chengduoZH 已提交
450
      val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
Y
Yu Yang 已提交
451 452 453 454 455 456
    }

    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

  if (dy) {
C
chengduoZH 已提交
457
    val = platform::ReduceSum(val, threadIdx.x);
C
chengduoZH 已提交
458
    if (threadIdx.x == 0) {
C
chengduoZH 已提交
459
      dy[j] = val;
Y
Yu Yang 已提交
460 461 462 463 464 465 466 467 468 469 470
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast2CUDA(cudaStream_t stream, const T* x,
                                       const T* y, const T* out, const T* dout,
                                       int pre, int n, int post, DX_OP dx_op,
                                       DY_OP dy_op, T* dx, T* dy) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
C
chengduoZH 已提交
471 472
  ElemwiseGradBroadcast2CUDAKernel<<<gird_size, block_size, 0, stream>>>(
      x, y, out, dout, pre, n, post, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
}

#endif

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
                         const framework::Tensor& x, const framework::Tensor& y,
                         const framework::Tensor& out,
                         const framework::Tensor& dout, int axis,
                         framework::Tensor* dx, framework::Tensor* dy,
                         DX_OP dx_op, DY_OP dy_op) {
  if (x.dims() == y.dims()) {
    size_t N = static_cast<size_t>(framework::product(x.dims()));
    platform::ForRange<DeviceContext> for_range(
        ctx.template device_context<DeviceContext>(), N);
    for_range(ElemwiseGradNoBroadcast<T, DX_OP, DY_OP>{
        x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), dx_op, dy_op,
        dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
        dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace())});
  } else {  // Y is a scalar
    auto x_dim = x.dims();
    auto y_dim = y.dims();

    if (y_dim.size() == 1 && y_dim[0] == 1) {
      // y is a scalar
      auto extended_dims = framework::vectorize(x_dim);
      extended_dims.push_back(1);
      x_dim = framework::make_ddim(extended_dims);
    }

    axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis);
    int pre, n, post;
    get_mid_dims(x_dim, y_dim, axis, pre, n, post);
    if (post == 1) {
      int h = pre;
      int w = n;
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
        ElemwiseGradBroadcast1CUDA(
            ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
            y.data<T>(), out.data<T>(), dout.data<T>(), h, w, dx_op, dy_op,
            dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
            dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
      } else {
        ElemwiseGradBroadcast1CPU(
            x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), h, w,
            dx_op, dy_op,
            dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
            dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
      }
    } else {
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
        ElemwiseGradBroadcast2CUDA(
            ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
            y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post, dx_op,
            dy_op,
            dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
            dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
      } else {
        ElemwiseGradBroadcast2CPU(
            x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n,
            post, dx_op, dy_op,
            dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
            dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
      }
    }
  }
};

Q
QI JUN 已提交
545
template <typename DeviceContext, typename T, typename functor,
F
fengjiayi 已提交
546
          typename broadcastfunctor, typename broadcast2functor>
C
chengduoZH 已提交
547 548 549 550 551 552
void ElementwiseGradCompute(const framework::ExecutionContext& ctx,
                            const framework::Tensor* x,
                            const framework::Tensor* y,
                            const framework::Tensor* out,
                            const framework::Tensor* dout, int axis,
                            framework::Tensor* dx, framework::Tensor* dy) {
Q
QI JUN 已提交
553
  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

571 572 573 574 575 576 577
  if (y_dims.size() == 1 && y_dims[0] == 1) {
    // y is a scalar
    auto extended_dims = framework::vectorize(x_dims);
    extended_dims.push_back(1);
    x_dims = framework::make_ddim(extended_dims);
  }

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
F
fengjiayi 已提交
593

594 595
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
C
chengduoZH 已提交
596 597
void ElementwiseComputeEx(const framework::ExecutionContext& ctx,
                          const framework::Tensor* x,
C
chengduoZH 已提交
598
                          const framework::Tensor* y, int axis, Functor func,
C
chengduoZH 已提交
599
                          framework::Tensor* z) {
600
  TransformFunctor<Functor, T, DeviceContext, OutType> functor(
C
chengduoZH 已提交
601
      x, y, z, ctx.template device_context<DeviceContext>(), func);
F
fengjiayi 已提交
602 603 604 605 606 607 608 609 610 611 612

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                    "Rank of first input must >= rank of second input.");

  if (x_dims == y_dims) {
    functor.Run();
    return;
  }

613 614 615 616 617 618 619
  if (y_dims.size() == 1 && y_dims[0] == 1) {
    // y is a scalar
    auto extended_dims = framework::vectorize(x_dims);
    extended_dims.push_back(1);
    x_dims = framework::make_ddim(extended_dims);
  }

F
fengjiayi 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
  }
}

635 636
}  // namespace operators
}  // namespace paddle