sequence_expand_op.cu 6.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15

#define EIGEN_USE_GPU
D
dzhwinter 已提交
16
#include <algorithm>
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/sequence_expand_op.h"
D
dzhwinter 已提交
18
#include "paddle/fluid/platform/cuda_helper.h"
W
wanghaoshuang 已提交
19

D
dzhwinter 已提交
20 21 22 23 24 25
namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;

template <typename T>
D
dzhwinter 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38
__global__ void sequence_expand_kernel(const T* x_data, const size_t* x_lod,
                                       const size_t* ref_lod,
                                       const size_t lod_size,
                                       /* default=1,
                                          the instance length*/
                                       const int x_item_length, T* out_data) {
  constexpr int N = 1024;
  __shared__ int mem[N];
  int offset = 0;
  for (int i = 0; i < lod_size; ++i) {
    mem[i] = offset;
    if (i < lod_size - 1) {
      offset += (ref_lod[i + 1] - ref_lod[i]) * (x_lod[i + 1] - x_lod[i]);
D
dzhwinter 已提交
39
    }
D
dzhwinter 已提交
40
  }
D
dzhwinter 已提交
41
  __syncthreads();
D
dzhwinter 已提交
42

D
dzhwinter 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56
  int bid = blockIdx.x;
  if (bid >= lod_size - 1) return;

  int x_item_count = x_lod[bid + 1] - x_lod[bid];
  int repeats = ref_lod[bid + 1] - ref_lod[bid];
  int out_offset = mem[bid];
  int x_offset = x_lod[bid];
  for (int tid_z = threadIdx.z; tid_z < repeats; tid_z += blockDim.z) {
    for (int tid_y = threadIdx.y; tid_y < x_item_count; tid_y += blockDim.y) {
      for (int tid_x = threadIdx.x; tid_x < x_item_length;
           tid_x += blockDim.x) {
        out_data[(out_offset + tid_z * x_item_count + tid_y) * x_item_length +
                 tid_x] = x_data[(x_offset + tid_y) * x_item_length + tid_x];
      }
D
dzhwinter 已提交
57 58
    }
  }
D
dzhwinter 已提交
59
}
D
dzhwinter 已提交
60

D
dzhwinter 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
template <typename T>
__global__ void sequence_expand_grad_kernel(const T* dout_data,
                                            const size_t* ref_lod,
                                            const size_t* dx_lod,
                                            const size_t lod_size,
                                            /* default=1,
                                               the instance length*/
                                            const int x_item_length,
                                            T* dx_data) {
  // TODO(dzhwinter) : too many atomicAdd
  // use shared memory to reduce memory visits
  constexpr int N = 1024;
  __shared__ int mem[N];
  int offset = 0;
  for (int i = 0; i < lod_size; ++i) {
    mem[i] = offset;
    if (i < lod_size - 1) {
      offset += (ref_lod[i + 1] - ref_lod[i]) * (dx_lod[i + 1] - dx_lod[i]);
D
dzhwinter 已提交
79 80 81
    }
  }
  __syncthreads();
D
dzhwinter 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

  int bid = blockIdx.x;
  if (bid >= lod_size - 1) return;
  int x_item_count = dx_lod[bid + 1] - dx_lod[bid];
  int repeats = ref_lod[bid + 1] - ref_lod[bid];
  int out_offset = mem[bid];
  int x_offset = dx_lod[bid];

  for (int tid_z = threadIdx.z; tid_z < repeats; tid_z += blockDim.z) {
    for (int tid_y = threadIdx.y; tid_y < x_item_count; tid_y += blockDim.y) {
      for (int tid_x = threadIdx.x; tid_x < x_item_length;
           tid_x += blockDim.x) {
        platform::CudaAtomicAdd(
            &dx_data[(x_offset + tid_y) * x_item_length + tid_x],
            dout_data[(out_offset + tid_z * x_item_count + tid_y) *
                          x_item_length +
                      tid_x]);
      }
    }
D
dzhwinter 已提交
101 102 103 104
  }
}

template <typename T>
D
dzhwinter 已提交
105
struct SequenceExpandFunctor<platform::CUDADeviceContext, T> {
D
dzhwinter 已提交
106 107 108 109 110
  void operator()(
      const platform::CUDADeviceContext& context, const LoDTensor& x,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* out) {
D
dzhwinter 已提交
111 112 113 114
    int x_item_length = x.numel() / x.dims()[0];
    int thread_x = std::min(32, std::max(static_cast<int>(ref_lod.size()), 16));
    int thread_y = 16;
    int thread_z = 1024 / thread_x / thread_y;
D
dzhwinter 已提交
115 116
    int block_x = static_cast<int>(ref_lod.size());
    dim3 block_size(thread_x, thread_y, thread_z);
D
dzhwinter 已提交
117
    dim3 grid_size(block_x, 1);
D
dzhwinter 已提交
118

D
dzhwinter 已提交
119
    sequence_expand_kernel<<<grid_size, block_size, 0, context.stream()>>>(
D
dzhwinter 已提交
120 121 122
        x.data<T>(), x_lod.CUDAData(context.GetPlace()),
        ref_lod.CUDAData(context.GetPlace()), x_lod.size(), x_item_length,
        out->mutable_data<T>(context.GetPlace()));
D
dzhwinter 已提交
123
  }
D
dzhwinter 已提交
124
};
D
dzhwinter 已提交
125

D
dzhwinter 已提交
126 127
template <typename T>
struct SequenceExpandGradFunctor<platform::CUDADeviceContext, T> {
D
dzhwinter 已提交
128
  void operator()(const platform::CUDADeviceContext& context,
D
dzhwinter 已提交
129 130 131 132
                  const LoDTensor& dout,
                  const framework::Vector<size_t>& x_lod, /*expand source lod*/
                  const framework::Vector<size_t>& ref_lod, /*expand based lod*/
                  LoDTensor* dx) {
D
dzhwinter 已提交
133 134 135 136
    int x_item_length = framework::product(dx->dims()) / dx->dims()[0];
    int thread_x = std::min(32, std::max(static_cast<int>(ref_lod.size()), 16));
    int thread_y = 16;
    int thread_z = 1024 / thread_x / thread_y;
D
dzhwinter 已提交
137 138
    int block_x = static_cast<int>(ref_lod.size());
    dim3 block_size(thread_x, thread_y, thread_z);
D
dzhwinter 已提交
139
    dim3 grid_size(block_x, 1);
D
dzhwinter 已提交
140 141 142 143
    sequence_expand_grad_kernel<<<grid_size, block_size, 0, context.stream()>>>(
        dout.data<T>(), ref_lod.CUDAData(context.GetPlace()),
        x_lod.CUDAData(context.GetPlace()), ref_lod.size(), x_item_length,
        dx->mutable_data<T>(context.GetPlace()));
D
dzhwinter 已提交
144 145
  }
};
D
dzhwinter 已提交
146 147 148 149

}  // namespace operators
}  // namespace paddle

W
wanghaoshuang 已提交
150
namespace ops = paddle::operators;
Q
QI JUN 已提交
151
REGISTER_OP_CUDA_KERNEL(
W
wanghaoshuang 已提交
152
    sequence_expand,
Y
yangyaming 已提交
153 154 155 156
    ops::SequenceExpandKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SequenceExpandKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SequenceExpandKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SequenceExpandKernel<paddle::platform::CUDADeviceContext, int64_t>);
Q
QI JUN 已提交
157
REGISTER_OP_CUDA_KERNEL(
W
wanghaoshuang 已提交
158
    sequence_expand_grad,
Y
yangyaming 已提交
159 160 161 162 163
    ops::SequenceExpandGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SequenceExpandGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SequenceExpandGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SequenceExpandGradKernel<paddle::platform::CUDADeviceContext,
                                  int64_t>);