prepared_operator.cc 9.5 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/prepared_operator.h"
16

17
#include "paddle/fluid/framework/data_type_transform.h"
18
#include "paddle/fluid/framework/details/nan_inf_utils.h"
19
#include "paddle/fluid/imperative/infer_shape_context.h"
J
Jiabin Yang 已提交
20

21 22
DECLARE_bool(check_nan_inf);

J
Jiabin Yang 已提交
23 24 25
namespace paddle {
namespace imperative {

26 27 28 29 30 31 32 33 34 35
const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<paddle::imperative::VarBase>& var) {
  return var->SharedVar();
}

const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<VariableWrapper>& var) {
  return var;
}

J
Jiabin Yang 已提交
36 37 38 39 40 41 42 43 44 45
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
  if (var.IsType<framework::LoDTensor>()) {
    return &(var.Get<framework::LoDTensor>());
  } else if (var.IsType<framework::SelectedRows>()) {
    return &(var.Get<framework::SelectedRows>().value());
  } else {
    return nullptr;
  }
}

46
template <typename VarType>
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
static void HandleComplexGradToRealGrad(const NameVarMap<VarType>& outs) {
  for (auto& pair : outs) {
    for (auto& var : pair.second) {
      if (var == nullptr) {
        continue;
      }
      if (var->ForwardDataType() ==
          static_cast<framework::proto::VarType::Type>(-1)) {
        VLOG(6) << "Var (" << var->Name()
                << ")'s forward data type is not set.";
        continue;
      }
      if (!framework::IsComplexType(var->DataType()) ||
          framework::IsComplexType(var->ForwardDataType())) {
        continue;
      }
      const auto* tensor = GetTensorFromVar(var->Var());
J
Jiabin Yang 已提交
64
      if (tensor && tensor->IsInitialized()) {
65 66 67 68 69 70 71 72
        VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType())
                << " var `" << var->Name() << "` to "
                << framework::DataTypeToString(var->ForwardDataType())
                << " real var in dynamic graph.";
        framework::Tensor out;
        framework::TransComplexToReal(var->ForwardDataType(), var->DataType(),
                                      *tensor, &out);
        SetTensorToVariable(var->Var(), out, var->MutableVar());
J
Jiabin Yang 已提交
73 74 75 76 77 78 79
      }
    }
  }
}

PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
80
                       const framework::OpKernelType& kernel_type,
81
                       const framework::OperatorWithKernel::OpKernelFunc& func,
82
                       platform::DeviceContext* dev_ctx)
83 84 85 86 87 88
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(func),
      dev_ctx_(dev_ctx) {}

89 90 91 92 93
template <typename VarType>
PreparedOp PrepareImpl(const NameVarMap<VarType>& ins,
                       const NameVarMap<VarType>& outs,
                       const framework::OperatorWithKernel& op,
                       const platform::Place& place,
94 95
                       const framework::AttributeMap& attrs,
                       const framework::AttributeMap& default_attrs) {
96
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
97
  auto* dev_ctx = pool.Get(place);
98

99 100 101 102 103 104 105 106 107 108 109
  framework::RuntimeContext ctx({}, {});

#ifdef PADDLE_WITH_MKLDNN
  // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
  // GetKernelType functions, so we need to copy the attributes there.
  // Const qualifier of Attrs had to be discarded to overwrite it.
  if (FLAGS_use_mkldnn) {
    auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
    mutable_op_attrs = attrs;
  }
#endif
J
Jiabin Yang 已提交
110

111
  // 1. get expected kernel key
112 113 114
  auto expected_kernel_key = op.GetExpectedKernelType(
      DygraphExecutionContext<VarType>(op, framework::Scope(), *dev_ctx, ctx,
                                       ins, outs, attrs, default_attrs));
115 116 117
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  // 2. check if op[type] has kernel registered.
J
Jiabin Yang 已提交
118 119
  auto& all_op_kernels = op.AllOpKernels();
  auto kernels_iter = all_op_kernels.find(op.Type());
120 121 122 123 124
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::NotFound(
          "There are no kernels which are registered in the %s operator.",
          op.Type()));
J
Jiabin Yang 已提交
125 126 127

  auto& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(expected_kernel_key);
128 129 130
#ifdef PADDLE_WITH_XPU
  if (kernel_iter == kernels.end() &&
      is_xpu_place(expected_kernel_key.place_)) {
131 132 133
    VLOG(3) << "missing XPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
134 135 136
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
137 138 139 140
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
141 142 143
    VLOG(3) << "missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
144 145 146
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
147
#endif
J
Jiabin Yang 已提交
148
  // TODO(jiabin): Add operator.cc's line 1000 part back when we need that case
149 150 151 152
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator %s does not have kernel for %s.", op.Type(),
                        KernelTypeToString(expected_kernel_key)));
153

154 155 156 157
  if (!(expected_kernel_key.place_ == place)) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
  }

158
  return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx);
159 160
}

161 162 163 164
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
                               const NameVarMap<VarBase>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
165 166 167
                               const framework::AttributeMap& attrs,
                               const framework::AttributeMap& default_attrs) {
  return PrepareImpl<VarBase>(ins, outs, op, place, attrs, default_attrs);
168 169 170 171 172 173
}

PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
                               const NameVarMap<VariableWrapper>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
174 175 176 177
                               const framework::AttributeMap& attrs,
                               const framework::AttributeMap& default_attrs) {
  return PrepareImpl<VariableWrapper>(ins, outs, op, place, attrs,
                                      default_attrs);
178 179
}

180 181 182
template <typename VarType>
static void PreparedOpRunImpl(
    const framework::OperatorBase& op, const framework::RuntimeContext& ctx,
183
    const framework::OpKernelType& kernel_type,
184
    const framework::OperatorWithKernel::OpKernelFunc& func,
185
    platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
186 187
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs) {
J
Jiabin Yang 已提交
188 189
  // TODO(zjl): remove scope in dygraph
  framework::Scope scope;
H
hong 已提交
190

191
  DygraphInferShapeContext<VarType> infer_shape_ctx(&ins, &outs, &attrs,
192
                                                    &default_attrs, op.Type());
193 194
  static_cast<const framework::OperatorWithKernel&>(op).InferShape(
      &infer_shape_ctx);
H
hong 已提交
195

196
  func(DygraphExecutionContext<VarType>(op, scope, *dev_ctx, ctx, ins, outs,
197
                                        attrs, default_attrs));
198

199 200 201 202 203
  if (FLAGS_check_nan_inf) {
    framework::details::CheckOpHasNanOrInfInDygraph<VarType>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  /**
   * [ Why need handle complex gradient to real gradient? ]
   *
   * After the introduction of complex number calculations, Ops that support
   * complex number calculations generally support type promotion, such as
   * x(float32) + y(complex64) = out(complex64), then the type of the grad
   * tensor should be dout(complex64), dx(float32), dy (complex64).
   *
   * But because the dout is complex64, the dx is also complex64 after
   * grad op kernel executed, we need to recognize this situation and
   * convert dx to float32 type. HandleComplexGradToRealGrad does this thing.
   */
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
219
}
H
hong 已提交
220

221 222
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
                     const NameVarMap<VarBase>& outs,
223 224
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
225
  PreparedOpRunImpl<VarBase>(op_, ctx_, kernel_type_, func_, dev_ctx_, ins,
226
                             outs, attrs, default_attrs);
227
}
H
hong 已提交
228

229 230
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
                     const NameVarMap<VariableWrapper>& outs,
231 232
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
233
  PreparedOpRunImpl<VariableWrapper>(op_, ctx_, kernel_type_, func_, dev_ctx_,
234
                                     ins, outs, attrs, default_attrs);
J
Jiabin Yang 已提交
235 236 237 238
}

}  // namespace imperative
}  // namespace paddle