test_pool2d_op.cc 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
#include "paddle/fluid/inference/anakin/convert/ut_helper.h"

namespace paddle {
namespace inference {
namespace anakin {

22 23 24
template <typename TargetT>
void test_pool2d(const platform::DeviceContext& context, bool use_gpu,
                 bool global_pooling, bool ceil_mode,
25 26 27
                 std::string pool_type = "max") {
  framework::Scope scope;
  std::unordered_set<std::string> parameters;
28 29
  AnakinConvertValidation<TargetT, ::anakin::Precision::FP32> validator(
      parameters, &scope, context, use_gpu);
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

  // The ITensor's Dims should not contain the batch size.
  // So, the ITensor's Dims of input and output should be C * H * W.
  validator.DeclInputVar("pool2d_x", {1, 3, 6, 7});
  if (global_pooling)
    validator.DeclOutputVar("pool2d_out", {1, 3, 1, 1});
  else if (ceil_mode)
    validator.DeclOutputVar("pool2d_out", {1, 3, 3, 4});
  else
    validator.DeclOutputVar("pool2d_out", {1, 3, 3, 3});

  // Prepare Op description
  framework::OpDesc desc;
  desc.SetType("pool2d");
  desc.SetInput("X", {"pool2d_x"});
  desc.SetOutput("Out", {"pool2d_out"});

  std::vector<int> ksize({2, 2});
  std::vector<int> strides({2, 2});
  std::vector<int> paddings({0, 0});
  std::string pooling_t = pool_type;

  desc.SetAttr("pooling_type", pooling_t);
  desc.SetAttr("ksize", ksize);
  desc.SetAttr("strides", strides);
  desc.SetAttr("paddings", paddings);
  desc.SetAttr("global_pooling", global_pooling);
  desc.SetAttr("ceil_mode", ceil_mode);

  LOG(INFO) << "set OP";
  validator.SetOp(*desc.Proto());
  LOG(INFO) << "execute";

  validator.Execute(1);
}

66 67 68 69 70 71 72 73 74 75 76
#ifdef PADDLE_WITH_CUDA
TEST(Pool2dOpConverter, normal) {
  platform::CUDAPlace gpu_place(0);
  platform::CUDADeviceContext ctx(gpu_place);
  test_pool2d<::anakin::saber::NV>(ctx, true, false, false);
}
TEST(Pool2dOpConverter, test_global_pooling) {
  platform::CUDAPlace gpu_place(0);
  platform::CUDADeviceContext ctx(gpu_place);
  test_pool2d<::anakin::saber::NV>(ctx, true, true, false);
}
77

78 79 80 81 82
TEST(Pool2dOpConverter, max_ceil_test) {
  platform::CUDAPlace gpu_place(0);
  platform::CUDADeviceContext ctx(gpu_place);
  test_pool2d<::anakin::saber::NV>(ctx, true, false, true);
}
83

84 85 86 87 88 89
TEST(Pool2dOpConverter, avg_ceil_test) {
  platform::CUDAPlace gpu_place(0);
  platform::CUDADeviceContext ctx(gpu_place);
  test_pool2d<::anakin::saber::NV>(ctx, true, false, true, "avg");
}
#endif
90

91 92 93 94 95 96 97 98 99
TEST(Pool2dOpConverter, normal_cpu) {
  platform::CPUPlace cpu_place;
  platform::CPUDeviceContext ctx(cpu_place);
  test_pool2d<::anakin::saber::X86>(ctx, false, false, false);
}
TEST(Pool2dOpConverter, test_global_pooling_cpu) {
  platform::CPUPlace cpu_place;
  platform::CPUDeviceContext ctx(cpu_place);
  test_pool2d<::anakin::saber::X86>(ctx, false, true, false);
100 101
}

102 103 104 105 106
TEST(Pool2dOpConverter, max_ceil_test_cpu) {
  platform::CPUPlace cpu_place;
  platform::CPUDeviceContext ctx(cpu_place);
  test_pool2d<::anakin::saber::X86>(ctx, false, false, true);
}
107

108 109 110 111 112
TEST(Pool2dOpConverter, avg_ceil_test_cpu) {
  platform::CPUPlace cpu_place;
  platform::CPUDeviceContext ctx(cpu_place);
  test_pool2d<::anakin::saber::X86>(ctx, false, false, true, "avg");
}
113 114 115 116 117 118

}  // namespace anakin
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
119 120 121
USE_CPU_ANAKIN_CONVERTER(pool2d);

#ifdef PADDLE_WITH_CUDA
122
USE_ANAKIN_CONVERTER(pool2d);
123
#endif