tensor.py 15.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
34 35
    'argmin',
    'argmax',
36 37
    'ones',
    'zeros',
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
Y
Yu Yang 已提交
42
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
43 44
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
45 46


47 48
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
49
                     name=None,
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
    Create a parameter
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
        Parameter: the created parameter
    """
Q
Qiao Longfei 已提交
68
    helper = LayerHelper("create_parameter", **locals())
69
    if attr is None:
X
xuwei06 已提交
70
        attr = ParamAttr(name=name)
71 72 73 74
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


75 76 77 78 79 80 81
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
F
fengjiayi 已提交
82 83
    Create a new variable in the global block(block 0).

84 85
    Args:
        shape(list[int]): shape of the variable
F
fengjiayi 已提交
86 87 88 89 90 91 92 93 94 95
        value(float): the value of the variable. The new created 
                      variable will be filled with it.
        dtype(string): data type of the variable
        persistable(bool): if this variable is persistable. 
                           Default: False
        force_cpu(bool): force this variable to be on CPU. 
                         Default: False
        name(str|None): The name of the variable. If set to None the variable 
                        name will be generated automatically. 
                        Default: None
96 97 98

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
99 100 101 102 103 104

    Examples:
        .. code-block:: python

            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32', 
                                 persistable=True, force_cpu=True, name='new_var')
105
    """
Q
Qiao Longfei 已提交
106 107
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
F
fengjiayi 已提交
108
        dtype=dtype, shape=shape, persistable=persistable)
Q
Qiao Longfei 已提交
109
    helper.set_variable_initializer(
110 111
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
112 113 114
    return var


115
def cast(x, dtype):
Y
Yu Yang 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


131
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
132
    """
133 134 135
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
136
    and returns that as the output.
137 138 139 140

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
141 142
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
143 144 145 146 147 148 149

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
150 151 152 153 154 155 156 157 158 159 160
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


161
def sums(input, out=None):
F
fengjiayi 已提交
162 163
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
164 165 166 167 168
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
169
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
170
                             Default: None
K
kavyasrinet 已提交
171 172

    Returns:
F
fengjiayi 已提交
173
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
174 175

    Examples:
F
fengjiayi 已提交
176
        .. code-block:: python
K
kavyasrinet 已提交
177 178 179 180 181 182

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
183 184
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
185
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
186 187 188 189 190 191 192 193
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


194
def assign(input, output):
195 196 197 198 199 200
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
201
        input(Variable|numpy.ndarray): The source variable
202 203 204 205 206 207 208 209 210 211 212
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
213
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
214 215
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
216
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
217 218
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
219
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
220
            value_name = "fp32_values"
221
            values = [float(v) for v in input.flat]
222
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
223
            value_name = "int32_values"
224
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
225 226
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
227 228 229
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
230 231 232 233 234 235 236

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
237
                value_name: values
X
xuwei06 已提交
238 239 240 241
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
242 243 244
    return output


Q
QI JUN 已提交
245
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
246
    """
247 248
    **fill_constant**

249 250
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
251

252
    The attribute `stop_gradient` of the created tensor is set to True.
253 254

    Args:
255
        shape(tuple|list|None): Shape of the output tensor.
256
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
257 258
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
259
        force_cpu(True|False): data should be on CPU if set true.
260 261

    Returns:
262
        Variable: The tensor variable storing the output.
263 264 265 266 267

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
268
    """
269

Y
Yu Yang 已提交
270 271 272 273 274 275 276
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
277 278 279 280
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
281
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
282
        })
Y
Yu Yang 已提交
283 284 285 286
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
287
@templatedoc()
Y
Yu Yang 已提交
288 289 290 291 292
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
293
                                  output_dim_idx=0):
294
    """
Y
yuyang18 已提交
295
    ${comment}
296 297 298

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
299 300 301
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

302
    Args:
Y
yuyang18 已提交
303
        input(${input_type}): ${input_comment}.
304

Y
yuyang18 已提交
305
        shape(${shape_type}): ${shape_comment}.
306

Y
yuyang18 已提交
307 308 309
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
310

Y
yuyang18 已提交
311 312 313 314 315
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
316
        ${out_comment}.
317
    """
Y
Yu Yang 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
335 336 337 338 339 340 341 342 343 344 345
def argmin(x, axis=0):
    """
    **argmin**

    This function computes the indices of the min elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
346

S
sneaxiy 已提交
347 348
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
349

S
sneaxiy 已提交
350 351
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
352

S
sneaxiy 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
          out = fluid.layers.argmin(x=in, axis=0)
          out = fluid.layers.argmin(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

    This function computes the indices of the max elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
377

S
sneaxiy 已提交
378 379
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
380

S
sneaxiy 已提交
381 382
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
383

S
sneaxiy 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396
          out = fluid.layers.argmax(x=in, axis=0)
          out = fluid.layers.argmax(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yang Yu 已提交
397
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
398
    """
399 400 401 402 403 404 405 406 407
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
408
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
409 410 411 412 413 414 415 416

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
417 418 419 420
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
421
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
422
    """
423 424 425 426 427 428 429 430 431
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
432
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
433 434 435 436 437 438 439 440

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
441 442
    """
    return fill_constant(value=0.0, **locals())
443 444


F
fengjiayi 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
        axis(int|tuple|list): Axis that along which order of elements 
                    is reversed. If it is a tuple or a list, reversing 
                    will be apply on each axis in the tuple or list.  

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
        x(list): A list of Tensor/LoDTensor to be saved together in a single file.
        file_path(str): The file path where variables will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})