helper.h 3.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
N
nhzlx 已提交
20 21 22
#include <string>
#include <utility>
#include <vector>
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29
#include "paddle/fluid/platform/dynload/tensorrt.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

30 31 32 33 34 35 36 37
#define IS_TRT_VERSION_GE(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)

#define TRT_VERSION                                    \
  NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
      NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD

Y
Yan Chunwei 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50
namespace dy = paddle::platform::dynload;

// TensorRT data type to size
const int kDataTypeSize[] = {
    4,  // kFLOAT
    2,  // kHALF
    1,  // kINT8
    4   // kINT32
};

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
51
static nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
52
  return static_cast<nvinfer1::IBuilder*>(
53
      dy::createInferBuilder_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
54
}
55
static nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
56
  return static_cast<nvinfer1::IRuntime*>(
57
      dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
58 59 60 61 62 63 64 65
}

// A logger for create TensorRT infer builder.
class NaiveLogger : public nvinfer1::ILogger {
 public:
  void log(nvinfer1::ILogger::Severity severity, const char* msg) override {
    switch (severity) {
      case Severity::kINFO:
66
        VLOG(3) << msg;
Y
Yan Chunwei 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        break;
      case Severity::kWARNING:
        LOG(WARNING) << msg;
        break;
      case Severity::kINTERNAL_ERROR:
      case Severity::kERROR:
        LOG(ERROR) << msg;
        break;
      default:
        break;
    }
  }

  static nvinfer1::ILogger& Global() {
    static nvinfer1::ILogger* x = new NaiveLogger;
    return *x;
  }

85
  ~NaiveLogger() override {}
Y
Yan Chunwei 已提交
86 87
};

N
nhzlx 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
class NaiveProfiler : public nvinfer1::IProfiler {
 public:
  typedef std::pair<std::string, float> Record;
  std::vector<Record> mProfile;

  virtual void reportLayerTime(const char* layerName, float ms) {
    auto record =
        std::find_if(mProfile.begin(), mProfile.end(),
                     [&](const Record& r) { return r.first == layerName; });
    if (record == mProfile.end())
      mProfile.push_back(std::make_pair(layerName, ms));
    else
      record->second += ms;
  }

  void printLayerTimes() {
    float totalTime = 0;
    for (size_t i = 0; i < mProfile.size(); i++) {
      printf("%-40.40s %4.3fms\n", mProfile[i].first.c_str(),
             mProfile[i].second);
      totalTime += mProfile[i].second;
    }
    printf("Time over all layers: %4.3f\n", totalTime);
  }
};

114 115 116 117 118 119 120 121
inline size_t ProductDim(const nvinfer1::Dims& dims) {
  size_t v = 1;
  for (int i = 0; i < dims.nbDims; i++) {
    v *= dims.d[i];
  }
  return v;
}

Y
Yan Chunwei 已提交
122 123 124
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle