hashtable_inl.h 5.4 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_PSLIB

namespace paddle {
namespace framework {

template <typename value_type>
struct ReplaceOp {
  __host__ __device__ value_type operator()(value_type new_value,
                                            value_type old_value) {
    return new_value;
  }
};

template <typename Table>
__global__ void insert_kernel(Table* table,
                              const typename Table::key_type* const keys,
                              const typename Table::mapped_type* const vals,
                              size_t len) {
  ReplaceOp<typename Table::mapped_type> op;
  thrust::pair<typename Table::key_type, typename Table::mapped_type> kv;

  const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < len) {
    kv.first = keys[i];
    kv.second = vals[i];
    auto it = table->insert(kv, op);
    assert(it != table->end() && "error: insert fails: table is full");
  }
}

template <typename Table>
__global__ void search_kernel(Table* table,
                              const typename Table::key_type* const keys,
                              typename Table::mapped_type* const vals,
                              size_t len) {
  const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < len) {
    auto it = table->find(keys[i]);
    if (it != table->end()) {
      vals[i] = it->second;
    }
  }
}

template <typename Table, typename GradType, typename Sgd>
__global__ void update_kernel(Table* table,
                              const typename Table::key_type* const keys,
                              const GradType* const grads, size_t len,
                              Sgd sgd) {
  const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < len) {
    auto it = table->find(keys[i]);
    if (it != table->end()) {
      sgd.update_value((it.getter())->second, grads[i]);
    }
  }
}

template <typename KeyType, typename ValType>
HashTable<KeyType, ValType>::HashTable(size_t capacity) {
  container_ = new TableContainer<KeyType, ValType>(capacity);
}

template <typename KeyType, typename ValType>
HashTable<KeyType, ValType>::~HashTable() {
  delete container_;
}

template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::show() {
  container_->print();
}

template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::get(const KeyType* d_keys, ValType* d_vals,
90
                                      size_t len, gpuStream_t stream) {
T
Thunderbrook 已提交
91 92 93 94 95 96 97 98 99 100 101
  if (len == 0) {
    return;
  }
  const int grid_size = (len - 1) / BLOCK_SIZE_ + 1;
  search_kernel<<<grid_size, BLOCK_SIZE_, 0, stream>>>(container_, d_keys,
                                                       d_vals, len);
}

template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::insert(const KeyType* d_keys,
                                         const ValType* d_vals, size_t len,
102
                                         gpuStream_t stream) {
T
Thunderbrook 已提交
103 104 105 106 107 108 109 110
  if (len == 0) {
    return;
  }
  const int grid_size = (len - 1) / BLOCK_SIZE_ + 1;
  insert_kernel<<<grid_size, BLOCK_SIZE_, 0, stream>>>(container_, d_keys,
                                                       d_vals, len);
}

T
Thunderbrook 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::dump_to_cpu(int devid, cudaStream_t stream) {
  container_->prefetch(cudaCpuDeviceId, stream);
  size_t num = container_->size();
  KeyType unuse_key = std::numeric_limits<KeyType>::max();
  thrust::pair<KeyType, ValType>* kv = container_->data();
  for (size_t i = 0; i < num; ++i) {
    if (kv[i].first == unuse_key) {
      continue;
    }
    ValType& gpu_val = kv[i].second;
    auto* downpour_value =
        (paddle::ps::DownpourFixedFeatureValue*)(gpu_val.cpu_ptr);
    int downpour_value_size = downpour_value->size();
    if (gpu_val.mf_size > 0 && downpour_value_size == 7) {
      downpour_value->resize(gpu_val.mf_size + downpour_value_size);
    }
    float* cpu_val = downpour_value->data();
    cpu_val[0] = 0;
    cpu_val[1] = gpu_val.delta_score;
    cpu_val[2] = gpu_val.show;
    cpu_val[3] = gpu_val.clk;
    cpu_val[4] = gpu_val.lr;
    cpu_val[5] = gpu_val.lr_g2sum;
    cpu_val[6] = gpu_val.slot;
    if (gpu_val.mf_size > 0) {
      for (int x = 0; x < gpu_val.mf_size; x++) {
        cpu_val[x + 7] = gpu_val.mf[x];
      }
    }
  }

  container_->prefetch(devid, stream);
}

T
Thunderbrook 已提交
146 147 148 149
template <typename KeyType, typename ValType>
template <typename GradType, typename Sgd>
void HashTable<KeyType, ValType>::update(const KeyType* d_keys,
                                         const GradType* d_grads, size_t len,
150
                                         Sgd sgd, gpuStream_t stream) {
T
Thunderbrook 已提交
151 152 153 154 155 156 157 158 159 160 161
  if (len == 0) {
    return;
  }
  const int grid_size = (len - 1) / BLOCK_SIZE_ + 1;
  update_kernel<<<grid_size, BLOCK_SIZE_, 0, stream>>>(container_, d_keys,
                                                       d_grads, len, sgd);
}

}  // end namespace framework
}  // end namespace paddle
#endif