test_sum_op.py 14.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18 19
import unittest
import numpy as np
from op_test import OpTest
20
import paddle
21
from paddle import enable_static
22
import paddle.fluid as fluid
T
tangwei12 已提交
23 24
import paddle.fluid.core as core
from paddle.fluid.op import Operator
25 26
from paddle.fluid.tests.unittests.op_test import (
    OpTest, convert_float_to_uint16, convert_uint16_to_float)
27
from paddle import _C_ops
28 29 30 31 32


class TestSumOp(OpTest):
    def setUp(self):
        self.op_type = "sum"
C
chengduo 已提交
33
        self.init_kernel_type()
34 35
        self.use_mkldnn = False
        self.init_kernel_type()
Z
zhupengyang 已提交
36 37 38
        x0 = np.random.random((3, 40)).astype(self.dtype)
        x1 = np.random.random((3, 40)).astype(self.dtype)
        x2 = np.random.random((3, 40)).astype(self.dtype)
39
        self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
40 41
        y = x0 + x1 + x2
        self.outputs = {'Out': y}
42
        self.attrs = {'use_mkldnn': self.use_mkldnn}
43

C
chengduo 已提交
44
    def init_kernel_type(self):
45
        self.dtype = np.float64
C
chengduo 已提交
46

47
    def test_check_output(self):
Q
qijun 已提交
48
        self.check_output()
49 50

    def test_check_grad(self):
Q
qijun 已提交
51
        self.check_grad(['x0'], 'Out')
52 53


54
class TestSelectedRowsSumOp(unittest.TestCase):
C
chengduo 已提交
55
    def setUp(self):
Q
qiaolongfei 已提交
56 57 58
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
59
        self.dtype = np.float64
C
chengduo 已提交
60
        self.init_kernel_type()
Q
qiaolongfei 已提交
61

C
chengduo 已提交
62
    def check_with_place(self, place, inplace):
Q
Qiao Longfei 已提交
63 64 65 66 67 68 69 70
        self.check_input_and_optput(core.Scope(), place, inplace, True, True,
                                    True)
        self.check_input_and_optput(core.Scope(), place, inplace, False, True,
                                    True)
        self.check_input_and_optput(core.Scope(), place, inplace, False, False,
                                    True)
        self.check_input_and_optput(core.Scope(), place, inplace, False, False,
                                    False)
T
tangwei12 已提交
71

C
chengduo 已提交
72
    def init_kernel_type(self):
C
chengduo 已提交
73
        pass
C
chengduo 已提交
74

C
chengduo 已提交
75 76 77 78
    def _get_array(self, rows, row_numel):
        array = np.ones((len(rows), row_numel)).astype(self.dtype)
        for i in range(len(rows)):
            array[i] *= rows[i]
Q
qiaolongfei 已提交
79 80
        return array

T
tangwei12 已提交
81 82 83
    def check_input_and_optput(self,
                               scope,
                               place,
Q
Qiao Longfei 已提交
84
                               inplace,
T
tangwei12 已提交
85 86 87 88 89 90 91
                               w1_has_data=False,
                               w2_has_data=False,
                               w3_has_data=False):

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)
T
tangwei12 已提交
92 93

        # create Out Variable
Q
Qiao Longfei 已提交
94 95 96 97 98
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()
T
tangwei12 已提交
99 100

        # create and run sum operator
Q
Qiao Longfei 已提交
101
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
T
tangwei12 已提交
102 103
        sum_op.run(scope, place)

T
tangwei12 已提交
104
        has_data_w_num = 0
Q
qiaolongfei 已提交
105 106
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
T
tangwei12 已提交
107
                has_data_w_num += 1
T
tangwei12 已提交
108

Q
qiaolongfei 已提交
109 110 111 112 113
        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
            self.assertTrue(
                np.array_equal(
                    np.array(out.get_tensor()),
C
chengduo 已提交
114
                    self._get_array(self.rows, self.row_numel) *
Q
qiaolongfei 已提交
115 116 117
                    has_data_w_num))
        else:
            self.assertEqual(len(out.rows()), 0)
T
tangwei12 已提交
118

Q
qiaolongfei 已提交
119
    def create_selected_rows(self, scope, place, var_name, has_data):
T
tangwei12 已提交
120
        # create and initialize W Variable
Q
qiaolongfei 已提交
121 122
        if has_data:
            rows = self.rows
T
tangwei12 已提交
123 124 125 126 127
        else:
            rows = []

        var = scope.var(var_name)
        w_selected_rows = var.get_selected_rows()
Q
qiaolongfei 已提交
128
        w_selected_rows.set_height(self.height)
T
tangwei12 已提交
129
        w_selected_rows.set_rows(rows)
C
chengduo 已提交
130
        w_array = self._get_array(self.rows, self.row_numel)
T
tangwei12 已提交
131 132 133 134 135 136 137
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        return var

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
Q
Qiao Longfei 已提交
138 139
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
T
tangwei12 已提交
140
        for place in places:
Q
Qiao Longfei 已提交
141 142
            for inplace in [True, False]:
                self.check_with_place(place, inplace)
T
tangwei12 已提交
143 144


145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class TestSelectedRowsSumOpInt(TestSelectedRowsSumOp):
    def init_kernel_type(self):
        self.dtype = np.int32


@unittest.skipIf(not core.supports_bfloat16(),
                 'place does not support BF16 evaluation')
class TestSelectedRowsSumBF16Op(TestSelectedRowsSumOp):
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
        self.dtype = np.uint16
        self.init_kernel_type()
        np.random.seed(12345)
        self.data = np.random.random((len(self.rows),
                                      self.row_numel)).astype(np.float32)

    def _get_array(self, rows, row_numel):
        if len(rows) > 0:
            return convert_float_to_uint16(self.data)
        else:
            return np.ndarray((0, row_numel), dtype=self.dtype)

    def check_input_and_optput(self,
                               scope,
                               place,
                               inplace,
                               w1_has_data=False,
                               w2_has_data=False,
                               w3_has_data=False):

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)

        # create Out Variable
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()

        # create and run sum operator
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
        sum_op.run(scope, place)

        has_data_w_num = 0
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
                has_data_w_num += 1

        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
            out_bf16 = np.array(out.get_tensor())
            out_fp32 = convert_uint16_to_float(out_bf16)
            ref_fp32 = convert_uint16_to_float(
                self._get_array(self.rows, self.row_numel)) * has_data_w_num
            np.testing.assert_allclose(out_fp32, ref_fp32, atol=0, rtol=0.95e-2)
        else:
            self.assertEqual(len(out.rows()), 0)

    def test_w_is_selected_rows(self):
        for inplace in [True, False]:
            self.check_with_place(core.CPUPlace(), inplace)


L
lidanqing 已提交
212 213 214 215 216
class TestSelectedRowsSumBF16OpBigRow(TestSelectedRowsSumBF16Op):
    def init_kernel_type(self):
        self.row_numel = 102


C
chengduo 已提交
217 218 219 220 221
class TestLoDTensorAndSelectedRowsOp(TestSelectedRowsSumOp):
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 2, 4, 5, 6]
222
        self.dtype = np.float64
C
chengduo 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

    def check_with_place(self, place, inplace):
        scope = core.Scope()
        if inplace:
            self.create_lod_tensor(scope, place, "x1")
            self.create_selected_rows(scope, place, "x2", True)
            out = scope.var("x1").get_tensor()
            out_name = "x1"
        else:
            self.create_selected_rows(scope, place, "x1", True)
            self.create_lod_tensor(scope, place, "x2")
            out = scope.var("out").get_tensor()
            out_name = "out"

        # create and run sum operator
        sum_op = Operator("sum", X=["x1", "x2"], Out=out_name)
        sum_op.run(scope, place)

        result = np.ones((1, self.height)).astype(np.int32).tolist()[0]
        for ele in self.rows:
            result[ele] += 1

        out_t = np.array(out)
        self.assertEqual(out_t.shape[0], self.height)
        self.assertTrue(
            np.array_equal(out_t,
                           self._get_array([i for i in range(
                               self.height)], self.row_numel) * np.tile(
                                   np.array(result).reshape(self.height, 1),
                                   self.row_numel)))

    def create_lod_tensor(self, scope, place, var_name):
        var = scope.var(var_name)
        w_tensor = var.get_tensor()
        w_array = self._get_array([i for i in range(self.height)],
                                  self.row_numel)
        w_tensor.set(w_array, place)
        return var


#----------- test fp16 -----------
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
chengduo 已提交
266 267 268 269 270
class TestFP16SumOp(TestSumOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
C
chengduo 已提交
271 272 273
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=2e-2)
C
chengduo 已提交
274 275 276 277

    # FIXME: Because of the precision fp16, max_relative_error
    # should be 0.15 here.
    def test_check_grad(self):
C
chengduo 已提交
278 279 280
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad(['x0'], 'Out', max_relative_error=0.15)
C
chengduo 已提交
281 282


C
chengduo 已提交
283 284 285 286 287 288
def create_test_sum_fp16_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestSumFp16Case(parent):
        def init_kernel_type(self):
            self.dtype = np.float16
C
chengduo 已提交
289

C
chengduo 已提交
290
        def test_w_is_selected_rows(self):
C
chengduo 已提交
291 292 293 294 295
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                for inplace in [True, False]:
                    self.check_with_place(place, inplace)

C
chengduo 已提交
296 297 298 299 300
    cls_name = "{0}_{1}".format(parent.__name__, "SumFp16Test")
    TestSumFp16Case.__name__ = cls_name
    globals()[cls_name] = TestSumFp16Case


301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
#----------- test bf16 -----------
class TestSumBF16Op(OpTest):
    def setUp(self):
        self.op_type = "sum"
        self.init_kernel_type()
        x0 = np.random.random((3, 40)).astype(np.float32)
        x1 = np.random.random((3, 40)).astype(np.float32)
        x2 = np.random.random((3, 40)).astype(np.float32)
        y = x0 + x1 + x2
        self.inputs = {
            "X": [("x0", convert_float_to_uint16(x0)),
                  ("x1", convert_float_to_uint16(x1)),
                  ("x2", convert_float_to_uint16(x2))]
        }
        self.outputs = {'Out': convert_float_to_uint16(y)}

    def init_kernel_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out', numeric_grad_delta=0.5)


S
Steffy-zxf 已提交
327
class API_Test_Add_n(unittest.TestCase):
328 329 330 331 332 333 334 335
    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input0 = fluid.layers.fill_constant(
                shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(
                shape=[2, 3], dtype='int64', value=3)
            expected_result = np.empty((2, 3))
            expected_result.fill(8)
S
Steffy-zxf 已提交
336
            sum_value = paddle.add_n([input0, input1])
337 338 339
            exe = fluid.Executor(fluid.CPUPlace())
            result = exe.run(fetch_list=[sum_value])

S
Steffy-zxf 已提交
340 341 342 343 344 345 346 347 348
            self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            input0 = paddle.ones(shape=[2, 3], dtype='float32')
            expected_result = np.empty((2, 3))
            expected_result.fill(2)
            sum_value = paddle.add_n([input0, input0])

            self.assertEqual((sum_value.numpy() == expected_result).all(), True)
349 350


351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
class TestRaiseSumError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.sum([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sum([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sum(data1)

        self.assertRaises(TypeError, test_dtype1)


class TestRaiseSumsError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.sums([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sums(data1)

        self.assertRaises(TypeError, test_dtype1)

        def test_out_type():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            fluid.layers.sums([data1, data2], out=[10])

        self.assertRaises(TypeError, test_out_type)

        def test_out_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            out = fluid.data(name="out", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2], out=out)

        self.assertRaises(TypeError, test_out_dtype)


L
Leo Chen 已提交
408 409 410 411
class TestSumOpError(unittest.TestCase):
    def test_errors(self):
        def test_empty_list_input():
            with fluid.dygraph.guard():
412
                fluid._C_ops.sum([])
L
Leo Chen 已提交
413 414 415

        def test_list_of_none_input():
            with fluid.dygraph.guard():
416
                fluid._C_ops.sum([None])
L
Leo Chen 已提交
417 418 419 420 421

        self.assertRaises(Exception, test_empty_list_input)
        self.assertRaises(Exception, test_list_of_none_input)


C
chengduo 已提交
422 423
create_test_sum_fp16_class(TestSelectedRowsSumOp)
create_test_sum_fp16_class(TestLoDTensorAndSelectedRowsOp)
C
chengduo 已提交
424

Q
qijun 已提交
425
if __name__ == "__main__":
426
    enable_static()
427
    unittest.main()