sgd_kernel.cu 7.3 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/sgd_kernel.h"

#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_helper.h"

P
update  
phlrain 已提交
21 22 23
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

P
phlrain 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
namespace phi {

template <typename T, typename MT>
__global__ void SGDKernelMT(const T* param,
                            const T* grad,
                            const T* learning_rate,
                            const int num,
                            T* param_out,
                            const MT* master_param,
                            MT* master_param_out) {
  MT lr = static_cast<MT>(learning_rate[0]);
  CUDA_KERNEL_LOOP(i, num) {
    MT p_data = master_param ? master_param[i] : static_cast<MT>(param[i]);
    MT g_data = static_cast<MT>(grad[i]);
    p_data = p_data - lr * g_data;
    param_out[i] = static_cast<T>(p_data);
    if (master_param_out) {
      master_param_out[i] = p_data;
    }
  }
}

template <typename T>
__global__ void SparseSGDFunctorKernel(const T* selected_rows,
                                       const int64_t* rows,
                                       const T* learning_rate,
                                       T* tensor_out,
                                       int64_t row_numel,
                                       int64_t limit) {
  for (int64_t i = blockIdx.x; i < limit; i += gridDim.x) {
    const T* selected_rows_ptr = selected_rows + i * row_numel;
    T* tensor_out_ptr = tensor_out + rows[i] * row_numel;
    for (int64_t index = threadIdx.x; index < row_numel; index += blockDim.x) {
      // Since index in rows of SelectedRows can be duplicate, we have to use
      // Atomic Operation to avoid concurrent write error.
      paddle::platform::CudaAtomicAdd(
          tensor_out_ptr + index,
          -static_cast<T>(1.0) * learning_rate[0] * selected_rows_ptr[index]);
    }
  }
}

template <typename T, typename Context>
P
update  
phlrain 已提交
67 68 69 70 71 72 73 74 75
void SGDDenseKernel(const Context& dev_ctx,
                    const DenseTensor& param,
                    const DenseTensor& learning_rate,
                    const DenseTensor& grad,
                    paddle::optional<const DenseTensor&> master_param,
                    bool multi_precision,
                    DenseTensor* param_out,
                    DenseTensor* master_param_out) {
  LOG(ERROR) << "run here";
P
phlrain 已提交
76 77 78 79 80 81 82 83
  using MPDType = typename paddle::operators::details::MPTypeTrait<T>::Type;
  // do check here
  // if (multi_precision) {
  //   bool has_master =
  //       ctx.HasInput("MasterParam") && ctx.HasOutput("MasterParamOut");

  // }
  const MPDType* master_in_data =
P
update  
phlrain 已提交
84
      multi_precision ? master_param->data<MPDType>() : nullptr;
P
phlrain 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97
  MPDType* master_out_data =
      multi_precision
          ? master_param_out->mutable_data<MPDType>(dev_ctx.GetPlace())
          : nullptr;

  int block = 512;
  int grid = (param.numel() + block - 1) / block;

  SGDKernelMT<T, MPDType><<<grid, block, 0, dev_ctx.stream()>>>(
      param.data<T>(),
      grad.data<T>(),
      learning_rate.data<T>(),
      param.numel(),
P
update  
phlrain 已提交
98
      param_out->mutable_data<T>(dev_ctx.GetPlace()),
P
phlrain 已提交
99 100 101 102 103
      master_in_data,
      master_out_data);
}

template <typename T, typename Context>
P
update  
phlrain 已提交
104 105 106 107 108 109 110 111 112
void SGDDenseParamSparseGradKernel(
    const Context& dev_ctx,
    const DenseTensor& param,
    const DenseTensor& learning_rate,
    const SelectedRows& grad,
    paddle::optional<const DenseTensor&> master_param,
    bool multi_precision,
    DenseTensor* param_out,
    DenseTensor* master_param_out) {
P
phlrain 已提交
113 114 115 116 117 118 119 120
  using MPDType = typename paddle::operators::details::MPTypeTrait<T>::Type;
  // do some check here
  // if (multi_precision) {
  //   bool has_master =
  //       ctx.HasInput("MasterParam") && ctx.HasOutput("MasterParamOut");

  // }
  const MPDType* master_in_data =
P
update  
phlrain 已提交
121
      multi_precision ? master_param->data<MPDType>() : nullptr;
P
phlrain 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  MPDType* master_out_data =
      multi_precision
          ? master_param_out->mutable_data<MPDType>(dev_ctx.GetPlace())
          : nullptr;

  PADDLE_ENFORCE_EQ(
      &param,
      param_out,
      phi::errors::InvalidArgument(
          "The input tensor Param of SgdOp should be equal with ParamOut "
          "if variable's type is SelectedRows."));

  auto in_height = grad.height();
  auto out_dims = param_out->dims();
  PADDLE_ENFORCE_EQ(in_height,
                    out_dims[0],
                    phi::errors::InvalidArgument(
                        "The input tensor Grad's height of SgdOp should be "
                        "equal with ParamOut's dims. But received Grad's "
                        "height [%s] and ParamOut's dims [%s]",
                        in_height,
                        out_dims[0]));

  auto& in_value = grad.value();
  auto& in_rows = grad.rows();

  int64_t in_row_numel = in_value.numel() / in_rows.size();
  PADDLE_ENFORCE_EQ(in_row_numel,
                    param_out->numel() / in_height,
                    phi::errors::InvalidArgument(
                        "The in_row_numel of SgdOp should be equal with "
                        "param_out's numel / in_height."));

  auto* in_data = in_value.data<T>();
  auto* out_data = param_out->data<T>();

  const int kThreadsPerBlock = 256;
  int thread_x = kThreadsPerBlock;
  int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
  int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);
  paddle::framework::MixVector<int64_t> mixv_in_rows(&in_rows);
P
update  
phlrain 已提交
163
  SparseSGDFunctorKernel<<<max_blocks, thread_x, 0, dev_ctx.stream()>>>(
P
phlrain 已提交
164 165 166 167 168 169 170 171
      in_data,
      mixv_in_rows.CUDAData(dev_ctx.GetPlace()),
      learning_rate.data<T>(),
      out_data,
      in_row_numel,
      in_rows.size());
}

P
update  
phlrain 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184
template <typename T, typename Context>
void SGDSparseParamSparseGradKernel(
    const Context& dev_ctx,
    const SelectedRows& param,
    const DenseTensor& learning_rate,
    const SelectedRows& grad,
    paddle::optional<const SelectedRows&> master_param,
    bool multi_precision,
    SelectedRows* param_out,
    SelectedRows* master_param_out) {
  PADDLE_THROW("not impl");
}

P
phlrain 已提交
185
}  // namespace phi
P
update  
phlrain 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

PD_REGISTER_KERNEL(sgd,
                   GPU,
                   ALL_LAYOUT,
                   phi::SGDDenseKernel,
                   phi::dtype::float16,
                   float,
                   double) {}

PD_REGISTER_KERNEL(sgd_dense_param_sparse_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::SGDDenseParamSparseGradKernel,
                   phi::dtype::float16,
                   float,
                   double) {}

PD_REGISTER_KERNEL(sgd_sparse_param_sparse_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::SGDSparseParamSparseGradKernel,
                   phi::dtype::float16,
                   float,
                   double) {}