conv_transpose_kernel.cc 2.7 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/conv_transpose_kernel.h"
#include "paddle/phi/kernels/impl/conv_transpose_kernel_impl.h"

#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void DepthwiseConv2dTransposeKernel(const Context& ctx,
                                    const DenseTensor& x,
                                    const DenseTensor& filter,
                                    const std::vector<int>& strides,
                                    const std::vector<int>& paddings,
                                    const std::vector<int>& output_padding,
                                    const std::vector<int>& output_size,
                                    const std::string& padding_algorithm,
                                    int groups,
                                    const std::vector<int>& dilations,
                                    const std::string& data_format,
                                    DenseTensor* out) {
  ConvTransposeRawKernel<T, Context>(ctx,
                                     x,
                                     filter,
                                     strides,
                                     paddings,
                                     padding_algorithm,
                                     groups,
                                     dilations,
                                     data_format,
                                     out);
}

}  // namespace phi

PD_REGISTER_KERNEL(conv2d_transpose,
                   CPU,
                   ALL_LAYOUT,
                   phi::Conv2dTransposeKernel,
                   float,
                   double) {}
PD_REGISTER_KERNEL(conv3d_transpose,
                   CPU,
                   ALL_LAYOUT,
                   phi::Conv3dTransposeKernel,
                   float,
                   double) {}
PD_REGISTER_KERNEL(depthwise_conv2d_transpose,
                   CPU,
                   ALL_LAYOUT,
                   phi::DepthwiseConv2dTransposeKernel,
                   float,
                   double) {}