ipu_executor.cc 12.7 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#include "paddle/fluid/platform/device/ipu/ipu_executor.h"

using float16 = paddle::platform::float16;
J
jianghaicheng 已提交
18 19 20 21 22

namespace paddle {
namespace platform {
namespace ipu {

23 24 25 26 27 28 29 30
Executor::~Executor() {
  Detach();
  session_.reset();
  executor_resources_.reset();
}

void Executor::Prepare(const std::string &proto) {
  VLOG(10) << "enter Executor::Prepare";
J
jianghaicheng 已提交
31

32 33
  AcquireDevice();
  executor_resources_ = std::make_unique<ExecutorResources>();
J
jianghaicheng 已提交
34 35 36

  auto art = popart::AnchorReturnType("All");
  std::map<popart::TensorId, popart::AnchorReturnType> anchor_ids;
37
  for (const auto &id : compiler_resources_->outputs) {
J
jianghaicheng 已提交
38 39 40 41
    anchor_ids.emplace(id, art);
  }
  auto dataFlow = popart::DataFlow(ipu_strategy_->batches_per_step, anchor_ids);

42
  if (ipu_strategy_->is_training) {
J
jianghaicheng 已提交
43
    VLOG(10) << "Creating TrainingSession from Onnx Model...";
44
    auto optimizer = compiler_resources_->NewOptimizer();
J
jianghaicheng 已提交
45
    session_ = popart::TrainingSession::createFromOnnxModel(
46 47 48
        proto, dataFlow, compiler_resources_->loss_var, *optimizer, device_,
        popart::InputShapeInfo(), ipu_strategy_->popart_options,
        ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
49 50 51
  } else {
    VLOG(10) << "Creating InferenceSession from Onnx Model...";
    session_ = popart::InferenceSession::createFromOnnxModel(
52 53
        proto, dataFlow, device_, popart::InputShapeInfo(),
        ipu_strategy_->popart_options, ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66
  }
  VLOG(10) << "Creating session from Onnx Model...done";

  VLOG(10) << "Preparing session device...";
  session_->prepareDevice();
  VLOG(10) << "Preparing session device...done";

  SetWeightsIO();

  VLOG(10) << "Copy weights from paddle to popart...";
  WeightsFromPaddle();
  VLOG(10) << "Copy weights from paddle to popart...done";

A
Allen Guo 已提交
67 68 69
  if (ipu_strategy_->random_seed != std::numeric_limits<std::uint64_t>::max()) {
    VLOG(10) << "Setting random seed to: " << ipu_strategy_->random_seed;
    session_->setRandomSeed(ipu_strategy_->random_seed);
J
jianghaicheng 已提交
70 71 72
  }
}

73 74
void Executor::Run(const std::vector<const Tensor *> &inputs,
                   const std::vector<Tensor *> &outputs,
J
jianghaicheng 已提交
75
                   const framework::ExecutionContext &ctx) {
76
  VLOG(10) << "enter Executor::Run";
J
jianghaicheng 已提交
77 78 79 80
  // inputs
  std::map<popart::TensorId, popart::IArray &> popart_inputs;
  std::map<popart::TensorId, PaddleIArray> input_wrappers;
  for (size_t i = 0; i < inputs.size(); i++) {
81 82
    auto tensor_id = compiler_resources_->inputs[i];
    input_wrappers.emplace(tensor_id, PaddleIArray(inputs[i]));
J
jianghaicheng 已提交
83 84 85 86 87 88
    popart_inputs.emplace(tensor_id, input_wrappers.at(tensor_id));
  }
  // anchors
  std::map<popart::TensorId, popart::IArray &> popart_anchors;
  std::map<popart::TensorId, PaddleIArray> anchor_wrappers;
  for (size_t i = 0; i < outputs.size(); i++) {
89
    auto tensor_id = compiler_resources_->outputs[i];
J
jianghaicheng 已提交
90 91 92 93 94 95 96
    // get dims & dtype from session
    auto fetch_info = session_->getInfo(tensor_id);
    auto output_shape = fetch_info.shape();
    if (ipu_strategy_->batches_per_step > 1) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->batches_per_step);
    }
97 98 99 100 101 102 103 104 105 106
    if (ipu_strategy_->popart_options.enableGradientAccumulation) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.accumulationFactor);
    }
    if (ipu_strategy_->popart_options.enableReplicatedGraphs) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.replicatedGraphCount);
    }

    auto *tensor = outputs[i];
107
    tensor->Resize(phi::make_ddim(output_shape));
J
jianghaicheng 已提交
108 109
    auto fetch_dtype = fetch_info.dataType();
    auto paddle_type = PopartType2VarType(fetch_dtype);
110
    tensor->mutable_data(ctx.GetPlace(),
111
                         framework::TransToPhiDataType(paddle_type));
J
jianghaicheng 已提交
112 113 114
    anchor_wrappers.emplace(tensor_id, PaddleIArray(tensor));
    popart_anchors.emplace(tensor_id, anchor_wrappers.at(tensor_id));
  }
115 116 117
  VLOG(10) << "Prepared inputs/anchors";

  if (ipu_strategy_->is_training && compiler_resources_->with_lr_sched) {
A
Allen Guo 已提交
118 119 120 121 122 123 124 125 126 127 128
    popart::Optimizer *optimizer;
    if (ipu_strategy_->runtime_options.enable_eval) {
      VLOG(10) << "Switch optimizer to eval mode";
      optimizer = compiler_resources_->eval_optimizer.get();
    } else {
      VLOG(10) << "Update learning_rate";
      auto new_lr =
          GetSingleVarFromScope<float>(scope_, compiler_resources_->lr_var);
      VLOG(10) << "New Lr: " << new_lr;
      optimizer = compiler_resources_->UpdateOptimizer(new_lr);
    }
129 130
    auto *session = dynamic_cast<popart::TrainingSession *>(session_.get());
    session->updateOptimizerFromHost(optimizer);
J
jianghaicheng 已提交
131 132 133 134 135 136
  }

  popart::StepIO stepio(popart_inputs, popart_anchors);
  VLOG(10) << "Running...";
  session_->run(stepio);
  VLOG(10) << "Running...done";
A
Allen Guo 已提交
137
}
J
jianghaicheng 已提交
138

A
Allen Guo 已提交
139 140
void Executor::WeightsToHost() {
  if (ipu_strategy_->is_training && session_) {
J
jianghaicheng 已提交
141
    WeightsToPaddle();
A
Allen Guo 已提交
142 143
  } else {
    LOG(WARNING) << "For a non-trainning graph, cannot sync weights from IPU.";
J
jianghaicheng 已提交
144 145 146
  }
}

147 148 149 150 151 152
void Executor::AcquireDevice() {
  VLOG(10) << "enter Executor::AcquireDevice";
  if (device_) {
    Detach();
    device_.reset();
  }
J
jianghaicheng 已提交
153

154
  bool use_ipu_model = GetBoolEnv("POPLAR_IPUMODEL");
A
Allen Guo 已提交
155
  bool enable_distribution = ipu_strategy_->enable_distribution;
156
  if (use_ipu_model) {
A
Allen Guo 已提交
157 158 159 160 161 162
    std::map<std::string, std::string> deviceOpts{
        {
            "numIPUs", std::to_string(ipu_strategy_->num_ipus),
        },
        {"ipuVersion", "ipu2"},
    };
163 164
    device_ = popart::DeviceManager::createDeviceManager().createIpuModelDevice(
        deviceOpts);
A
Allen Guo 已提交
165 166 167 168 169 170 171 172 173 174
  } else if (enable_distribution) {
    auto ipus_per_replica = ipu_strategy_->num_ipus /
                            ipu_strategy_->popart_options.replicatedGraphCount;
    auto device_id = popdist_get_device(ipus_per_replica);
    device_ = popart::DeviceManager::createDeviceManager().acquireDeviceById(
        device_id);
    PADDLE_ENFORCE_NOT_NULL(
        device_, platform::errors::Unavailable(
                     "Can't attach IPU in distribution, ipu_num = %d.",
                     RequestIpus(ipu_strategy_->num_ipus)));
175 176 177 178 179 180 181 182 183
  } else {
    device_ =
        popart::DeviceManager::createDeviceManager().acquireAvailableDevice(
            RequestIpus(ipu_strategy_->num_ipus));
    PADDLE_ENFORCE_NOT_NULL(device_, platform::errors::Unavailable(
                                         "Can't attach IPU, ipu_num = %d.",
                                         RequestIpus(ipu_strategy_->num_ipus)));
  }
  VLOG(10) << "leave Executor::AcquireDevice";
J
jianghaicheng 已提交
184 185
}

186 187 188 189 190 191
void Executor::Detach() {
  if (device_ && device_->isAttached()) {
    VLOG(10) << "trying to detach IPU";
    device_->detach();
    VLOG(10) << " detached IPU";
  }
J
jianghaicheng 已提交
192 193 194
}

void Executor::SetWeightsIO() {
195 196
  auto opt_type = compiler_resources_->optimizer_type;
  VLOG(10) << "SetWeightsIO for " << opt_type;
J
jianghaicheng 已提交
197
  auto pre_post_fix = GetOptPrePostfix(opt_type);
A
Allen Guo 已提交
198
  for (const auto &weight_pd : compiler_resources_->weights) {
J
jianghaicheng 已提交
199 200
    for (const auto &pair : pre_post_fix) {
      // pair.first : popart prefix, pair.second : paddle postfix
A
Allen Guo 已提交
201 202 203
      auto weight_pop = compiler_resources_->tensors[weight_pd];
      auto popart_var = pair.first + weight_pop;
      auto paddle_var = weight_pd + pair.second;
J
jianghaicheng 已提交
204

A
Allen Guo 已提交
205
      if (scope_->FindVar(paddle_var) == nullptr) {
J
jianghaicheng 已提交
206 207
        continue;
      }
A
Allen Guo 已提交
208
      if (!session_->hasInfo(popart_var)) {
209 210 211
        continue;
      }

A
Allen Guo 已提交
212 213 214
      VLOG(10) << "Connect paddle weight: " << paddle_var
               << " with popart weight: " << popart_var;
      auto var = scope_->GetVar(paddle_var);
215
      auto data_ptr = var->GetMutable<framework::LoDTensor>()->data();
A
Allen Guo 已提交
216 217
      auto tensor_info = session_->getInfo(popart_var);
      executor_resources_->weights_io.insert(popart_var,
218 219
                                             {data_ptr, tensor_info});
      executor_resources_->weights_and_opt_state.emplace_back(
A
Allen Guo 已提交
220
          std::make_pair(popart_var, paddle_var));
J
jianghaicheng 已提交
221 222 223 224
    }
  }
}

225 226 227 228
// align_to_popart: align dtype to popart if true, else to paddle
void Executor::ConvertWeights(bool align_to_popart) {
  for (auto weight_pair : executor_resources_->weights_and_opt_state) {
    auto paddle_var = scope_->GetVar(weight_pair.second);
A
Allen Guo 已提交
229 230
    auto paddle_var_dtype = PdDataType2PopartType(
        paddle_var->GetMutable<framework::LoDTensor>()->dtype());
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    PADDLE_ENFORCE_EQ((paddle_var_dtype == popart::DataType::FLOAT ||
                       paddle_var_dtype == popart::DataType::FLOAT16),
                      true,
                      platform::errors::InvalidArgument(
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "Paddle, but received type is %s.",
                          paddle_var_dtype));

    popart::TensorInfo info = session_->getInfo(weight_pair.first);
    auto popart_var_dtype = info.dataType();
    PADDLE_ENFORCE_EQ((popart_var_dtype == popart::DataType::FLOAT ||
                       popart_var_dtype == popart::DataType::FLOAT16),
                      true,
                      platform::errors::InvalidArgument(
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "popart, but received type is %s.",
                          popart_var_dtype));

    if (paddle_var_dtype == popart_var_dtype) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have the same dtype : " << popart_var_dtype;
      continue;
    } else if (paddle_var_dtype == popart::DataType::FLOAT) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have different dtype : " << popart_var_dtype;
      auto *data_ptr =
          paddle_var->GetMutable<framework::LoDTensor>()->data<float>();

      auto num_elem = info.nelms();
      if (align_to_popart) {
        std::vector<uint16_t> fp16_data;
        std::transform(data_ptr, data_ptr + num_elem,
                       std::back_inserter(fp16_data),
                       [&](float elem) { return popart::floatToHalf(elem); });
        memcpy(reinterpret_cast<void *>(data_ptr), fp16_data.data(),
               num_elem * sizeof(float16));
      } else {
        std::vector<float> fp32_data;
        auto fp16_data_ptr = reinterpret_cast<uint16_t *>(data_ptr);
        std::transform(fp16_data_ptr, fp16_data_ptr + num_elem,
                       std::back_inserter(fp32_data), [&](uint16_t elem) {
                         return popart::halfToFloat(elem);
                       });
        memcpy(reinterpret_cast<void *>(data_ptr), fp32_data.data(),
               num_elem * sizeof(float));
      }
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Convert Paddle FLOAT16 to popart FLOAT"));
    }
  }
J
jianghaicheng 已提交
283 284
}

285 286 287 288 289 290 291 292 293 294 295 296 297
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Paddle -> Popart        |
// |  FLOAT  | FLOAT16 | floatToHalf -> Paddle -> Popart |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Paddle -> Popart        |
// |-----------------------------------------------------|
// floatToHalf -> Paddle: cast then save to paddle
// Paddle -> Popart: copy from paddle to popart
void Executor::WeightsFromPaddle() {
  ConvertWeights(true);
  session_->writeWeights(executor_resources_->weights_io);
A
Allen Guo 已提交
298
  session_->weightsFromHost();
299
}
J
jianghaicheng 已提交
300

301 302 303 304 305 306 307 308 309 310 311
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Popart -> Paddle        |
// |  FLOAT  | FLOAT16 | Popart -> Paddle -> halfToFloat |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Popart -> Paddle        |
// |-----------------------------------------------------|
// Paddle -> halfToFloat: cast then save to paddle
// Popart -> Paddle: copy from paddle to popart
void Executor::WeightsToPaddle() {
A
Allen Guo 已提交
312
  session_->weightsToHost();
313 314 315
  session_->readWeights(executor_resources_->weights_io);
  ConvertWeights(false);
}
J
jianghaicheng 已提交
316

317 318 319 320 321 322 323
void Executor::SaveModelToHost(const std::string &path) {
  if (session_) {
    WeightsToPaddle();
    session_->modelToHost(path);
  } else {
    LOG(WARNING) << "Model is empty";
  }
J
jianghaicheng 已提交
324 325 326 327 328
}

}  // namespace ipu
}  // namespace platform
}  // namespace paddle