test_graph.cu 4.7 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/fleet/heter_ps/graph_gpu_ps_table.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_comm.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
#include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h"
#include "paddle/fluid/platform/cuda_device_guard.h"

using namespace paddle::framework;
TEST(TEST_FLEET, graph_comm) {
  int gpu_count = 3;
  std::vector<int> dev_ids;
  dev_ids.push_back(0);
  dev_ids.push_back(1);
  dev_ids.push_back(2);
  std::shared_ptr<HeterPsResource> resource =
      std::make_shared<HeterPsResource>(dev_ids);
  resource->enable_p2p();
  GpuPsGraphTable g(resource);
  int node_count = 10;
  std::vector<std::vector<int64_t>> neighbors(node_count);
  int ind = 0;
  int64_t node_id = 0;
  std::vector<GpuPsCommGraph> graph_list(gpu_count);
  while (ind < node_count) {
    int neighbor_size = ind + 1;
    graph_list[ind % gpu_count].node_size++;
    graph_list[ind % gpu_count].neighbor_size += neighbor_size;
    while (neighbor_size--) {
      neighbors[ind].push_back(node_id++);
    }
    ind++;
  }
  std::vector<int> neighbor_offset(gpu_count, 0), node_index(gpu_count, 0);
  for (int i = 0; i < graph_list.size(); i++) {
    graph_list[i].node_list = new GpuPsGraphNode[graph_list[i].node_size];
    graph_list[i].neighbor_list = new int64_t[graph_list[i].neighbor_size];
  }
  for (int i = 0; i < node_count; i++) {
    ind = i % gpu_count;
    graph_list[ind].node_list[node_index[ind]].node_id = i;
    graph_list[ind].node_list[node_index[ind]].neighbor_offset =
        neighbor_offset[ind];
    graph_list[ind].node_list[node_index[ind]].neighbor_size =
        neighbors[i].size();
    for (auto x : neighbors[i]) {
      graph_list[ind].neighbor_list[neighbor_offset[ind]++] = x;
    }
    node_index[ind]++;
  }
  g.build_graph_from_cpu(graph_list);
  /*
  gpu 0:
  0,3,6,9
  gpu 1:
  1,4,7
  gpu 2:
  2,5,8

  query(2,6) returns nodes [6,9,1,4,7,2]
  */
  int64_t answer[6] = {6, 9, 1, 4, 7, 2};
  int64_t *res = new int64_t[6];
  auto query_res = g.query_node_list(0, 2, 6);
  cudaMemcpy(res, query_res->val, 48, cudaMemcpyDeviceToHost);
  ASSERT_EQ(query_res->actual_sample_size, 6);
  for (int i = 0; i < 6; i++) {
    ASSERT_EQ(res[i], answer[i]);
  }
  delete[] res;
  delete query_res;
  /*
   node x's neighbor list = [(1+x)*x/2,(1+x)*x/2 + 1,.....,(1+x)*x/2 + x]
   so node 6's neighbors are [21,22...,27]
   node 7's neighbors are [28,29,..35]
    node 0's neighbors are [0]
   query([7,0,6],sample_size=3) should return [28,29,30,0,x,x,21,22,23]
   6 --index-->2
   0 --index--->0
   7 --index-->2
  */
97

S
seemingwang 已提交
98 99 100 101 102
  int64_t cpu_key[3] = {7, 0, 6};
  void *key;
  cudaMalloc((void **)&key, 3 * sizeof(int64_t));
  cudaMemcpy(key, cpu_key, 3 * sizeof(int64_t), cudaMemcpyHostToDevice);
  auto neighbor_sample_res = g.graph_neighbor_sample(0, (int64_t *)key, 3, 3);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  res = new int64_t[7];
  cudaMemcpy(res, neighbor_sample_res->val, 56, cudaMemcpyDeviceToHost);
  int *actual_sample_size = new int[3];
  cudaMemcpy(actual_sample_size, neighbor_sample_res->actual_sample_size, 12,
             cudaMemcpyDeviceToHost);  // 3, 1, 3
  int *cumsum_sample_size = new int[3];
  cudaMemcpy(cumsum_sample_size, neighbor_sample_res->offset, 12,
             cudaMemcpyDeviceToHost);  // 0, 3, 4

  std::vector<std::vector<int64_t>> neighbors_;
  std::vector<int64_t> neighbors_7 = {28, 29, 30, 31, 32, 33, 34, 35};
  std::vector<int64_t> neighbors_0 = {0};
  std::vector<int64_t> neighbors_6 = {21, 22, 23, 24, 25, 26, 27};
  neighbors_.push_back(neighbors_7);
  neighbors_.push_back(neighbors_0);
  neighbors_.push_back(neighbors_6);
  for (int i = 0; i < 3; i++) {
    for (int j = cumsum_sample_size[i];
         j < cumsum_sample_size[i] + actual_sample_size[i]; j++) {
      bool flag = false;
      for (int k = 0; k < neighbors_[i].size(); k++) {
        if (res[j] == neighbors_[i][k]) {
          flag = true;
          break;
        }
      }
      ASSERT_EQ(flag, true);
S
seemingwang 已提交
130 131
    }
  }
132

S
seemingwang 已提交
133
  delete[] res;
134 135
  delete[] actual_sample_size;
  delete[] cumsum_sample_size;
S
seemingwang 已提交
136 137
  delete neighbor_sample_res;
}