triangular_solve_kernel.cu 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/triangular_solve_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/expand_kernel.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/common_shape.h"

// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memory.h"

namespace phi {

template <typename T, typename Context>
void TriangularSolveKernel(const Context& dev_ctx,
                           const DenseTensor& x,
                           const DenseTensor& y,
                           bool upper,
                           bool transpose,
                           bool unitriangular,
                           DenseTensor* out) {
  // get broadcast dim
  std::vector<int64_t> x_bst_dims_vec;
  std::vector<int64_t> y_bst_dims_vec;
  std::tie(x_bst_dims_vec, y_bst_dims_vec) =
      funcs::MatrixGetBroadcastDims(x, y);
  int x_bst_ndim = x_bst_dims_vec.size();
  int y_bst_ndim = y_bst_dims_vec.size();

  // Tensor broadcast to 'out' and temp 'x_bst'
  ScalarArray x_bst_dims(x_bst_dims_vec);
  DenseTensor x_bst = phi::Empty<T, Context>(dev_ctx, x_bst_dims);
  const T* x_bst_data = x_bst.data<T>();
  ExpandKernel<T, Context>(dev_ctx, x, x_bst_dims, &x_bst);

  out->Resize(phi::make_ddim(y_bst_dims_vec));
  T* out_data = dev_ctx.template Alloc<T>(out);
  ScalarArray y_bst_dims(y_bst_dims_vec);
  ExpandKernel<T, Context>(dev_ctx, y, y_bst_dims, out);

  // calculate use cublas library
  CBLAS_UPLO uplo = upper ? CblasUpper : CblasLower;
  CBLAS_TRANSPOSE transA = transpose ? CblasTrans : CblasNoTrans;
  CBLAS_DIAG diag = unitriangular ? CblasUnit : CblasNonUnit;

  int M = static_cast<int>(y_bst_dims_vec[y_bst_ndim - 2]);
  int N = static_cast<int>(y_bst_dims_vec[y_bst_ndim - 1]);
  auto lda = std::max(1, M);
  auto ldb = std::max(1, N);

  int batch_size = 1;
  for (int i = 0; i < x_bst_ndim - 2; i++) {
    batch_size *= x_bst_dims_vec[i];
  }

  auto blas = phi::funcs::GetBlas<GPUContext, T>(dev_ctx);
  if (batch_size <= 8 && M >= 64) {
    for (auto i = 0; i < batch_size; i++) {
      blas.TRSM(CblasLeft,
                uplo,
                transA,
                diag,
                M,
                N,
                T(1),
                x_bst_data + i * M * M,
                lda,
                out_data + i * N * M,
                ldb);
    }
  } else {
    std::vector<const T*> cpu_ptrs(batch_size * 2);
    for (int i = 0; i < batch_size; ++i) {
      cpu_ptrs[i] = x_bst_data + i * M * M;
      cpu_ptrs[i + batch_size] = out_data + i * M * N;
    }

    // Copy the addresses of A and tmp_b from host to device.
    paddle::memory::allocation::AllocationPtr tmp_gpu_ptrs_data =
        paddle::memory::Alloc(dev_ctx, cpu_ptrs.size() * sizeof(T*));

    paddle::memory::Copy(dev_ctx.GetPlace(),
                         tmp_gpu_ptrs_data->ptr(),
                         paddle::platform::CPUPlace(),
                         static_cast<void*>(cpu_ptrs.data()),
                         cpu_ptrs.size() * sizeof(T*),
                         dev_ctx.stream());

    const T** gpu_a_ptrs =
        reinterpret_cast<const T**>(tmp_gpu_ptrs_data->ptr());
    T** gpu_b_ptrs =
        reinterpret_cast<T**>(tmp_gpu_ptrs_data->ptr()) + batch_size;
    blas.BatchedTRSM(CblasLeft,
                     uplo,
                     transA,
                     diag,
                     M,
                     N,
                     static_cast<T>(1.0),
                     gpu_a_ptrs,
                     lda,
                     gpu_b_ptrs,
                     ldb,
                     batch_size);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(triangular_solve,
                   GPU,
                   ALL_LAYOUT,
                   phi::TriangularSolveKernel,
                   float,
                   double) {}