backward.py 24.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
16
from . import core
F
update  
fengjiayi 已提交
17
import collections
18
import copy
Y
Yu Yang 已提交
19
import unique_name
20

21 22 23 24
__all__ = [
    'append_backward',
    'calc_gradient',
]
25 26


27 28
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
29
    Traverse all ops in op_descs[begin_idx : end_idx],
30 31
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
32 33 34
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
35
        end_idx = len(op_descs)
F
update  
fengjiayi 已提交
36
    for i in range(begin_idx, end_idx):
37
        op_desc = op_descs[i]
F
fengjiayi 已提交
38 39 40 41
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc.rename_input(old_name, new_name)
        op_desc.rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
42 43


F
fengjiayi 已提交
44
def _create_op_desc_(op_type, inputs, outputs, attrs):
45 46 47
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
    for para, args in inputs.iteritems():
        op_desc.set_input(para, args)
    for para, args in outputs.iteritems():
        op_desc.set_output(para, args)
    for name, val in attrs.iteritems():
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
            op_desc.set_attr(name, val)
    return op_desc


62 63 64 65 66 67
def _infer_var_data_type_(grad_var_name, block):
    """
    Infer the data type of given grad variable
    """
    grad_var = block.desc.find_var(grad_var_name.encode("ascii"))
    fwd_name = _strip_grad_suffix_(grad_var_name.encode("ascii"))
F
fengjiayi 已提交
68 69 70 71
    if block.desc.has_var_recursive(fwd_name):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode("ascii"))
        grad_var.set_dtype(fwd_var.dtype())
    else:
72
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
73 74


F
fengjiayi 已提交
75
def _all_in_set_(cands, s):
76 77 78
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
79 80
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
81 82 83 84 85 86
    for c in cands:
        if not c in s:
            return False
    return True


87 88 89 90 91 92 93 94 95 96 97 98
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
    for c in cands:
        if c in s:
            return True
    return False


F
fengjiayi 已提交
99
def _strip_grad_suffix_(name):
100 101 102 103 104
    """
    Strip the grad suffix from the given varibale name
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
F
fengjiayi 已提交
105 106
    pos = name.find(core.grad_var_suffix())
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
107 108 109


def _append_grad_suffix_(name):
110 111 112 113
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
F
fengjiayi 已提交
114 115 116
    return name + core.grad_var_suffix()


F
fengjiayi 已提交
117
def _addup_repetitive_outputs_(op_descs):
118 119 120 121 122
    """
    In backward part, an variable may be the output of more than one ops.
    In this case, the variable should be the accumulation of all the outputs.
    `sum_op`s are added to implement the accumulate.
    """
F
update  
fengjiayi 已提交
123 124
    pending_sum_ops = []
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
125 126
    renamed_vars = collections.defaultdict(list)
    for idx, op_desc in enumerate(op_descs):
F
update  
fengjiayi 已提交
127
        for var_name in op_desc.input_arg_names():
F
fengjiayi 已提交
128 129 130 131 132
            if len(renamed_vars[var_name]) > 1:
                pending_sum_ops.append(
                    (_create_op_desc_("sum", {"X": renamed_vars[var_name]},
                                      {"Out": [var_name]}, {}), idx))
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
133
        for var_name in op_desc.output_arg_names():
F
fengjiayi 已提交
134 135 136
            if var_name == core.empty_var_name(
            ) or var_name in op_desc.input_arg_names():
                # empty variable or inplace op
F
fengjiayi 已提交
137
                continue
F
fengjiayi 已提交
138
            if len(renamed_vars[var_name]) == 0:
F
update  
fengjiayi 已提交
139
                # it's the first time we get the variable
F
fengjiayi 已提交
140
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
141
            else:
F
fengjiayi 已提交
142
                if len(renamed_vars[var_name]) == 1:
F
update  
fengjiayi 已提交
143 144
                    new_name = var_name + "@RENAME@" + \
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
145
                    var_rename_count[var_name] += 1
F
update  
fengjiayi 已提交
146
                    # rename original var_name
F
fengjiayi 已提交
147 148
                    renamed_vars[var_name][0] = new_name
                    _rename_arg_(op_descs, var_name, new_name, 0, idx)
F
fengjiayi 已提交
149
                    _rename_arg_(pending_sum_ops, var_name, new_name)
F
update  
fengjiayi 已提交
150 151 152

                new_name = var_name + "@RENAME@" + \
                    str(var_rename_count[var_name])
F
fengjiayi 已提交
153
                var_rename_count[var_name] += 1
F
update  
fengjiayi 已提交
154
                op_desc.rename_output(var_name, new_name)
F
fengjiayi 已提交
155 156
                renamed_vars[var_name].append(new_name)
    for var_name, inputs in renamed_vars.iteritems():
F
update  
fengjiayi 已提交
157
        if len(inputs) > 1:
F
fengjiayi 已提交
158
            pending_sum_ops.append((_create_op_desc_(
F
fengjiayi 已提交
159
                "sum", {"X": inputs}, {"Out": [var_name]}, {}), len(op_descs)))
F
fengjiayi 已提交
160
    # sum_op descs are sorted according to their insert position
F
update  
fengjiayi 已提交
161
    for p in reversed(pending_sum_ops):
F
fengjiayi 已提交
162 163 164 165 166 167
        op_descs.insert(p[1], p[0])

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
168 169 170 171
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
172
        2. all grad inputs of the grad op are in 'no_grad_set'
173
    """
F
fengjiayi 已提交
174 175

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
176 177
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
178 179 180 181
            return True
        if _all_in_set_(
                filter(lambda name: name.find(core.grad_var_suffix()) != -1,
                       op_desc.input_arg_names()), no_grad_set):
F
fengjiayi 已提交
182
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
183 184 185
            return True
        return False

F
fengjiayi 已提交
186 187
    # Remove ops whose outputs are all in no_grad_dict
    op_descs = filter(
F
fengjiayi 已提交
188
        lambda op_desc: not _op_can_be_removed_(op_desc, no_grad_set), op_descs)
F
fengjiayi 已提交
189 190
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
191
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
192
        for arg in op_desc.input_arg_names():
F
fengjiayi 已提交
193 194 195
            if core.grad_var_suffix() in arg and arg in no_grad_set:
                to_insert.append((_create_op_desc_("fill_zeros_like", {
                    "X": [_strip_grad_suffix_(arg)]
196
                }, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
197 198 199 200 201 202

    map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert))

    return op_descs


Y
Yang Yang 已提交
203 204 205 206 207 208 209 210 211
import proto.framework_pb2 as framework_pb2


def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
    proto = framework_pb2.OpDesc.FromString(str(protostr))
    return proto.__str__()


212 213 214 215 216 217 218 219 220 221
def _callback_lookup_(op):
    """
    Only used in _append_backward_ops_
    Build and returns a callback function for certain op. For example

    parallel_do:           AllReduce

    :param op:
    :return: callback function
    """
Y
Yang Yang 已提交
222
    if op.type == 'parallel_do' and op.attr('use_nccl'):
Q
qiaolongfei 已提交
223
        all_vars = op.block.vars
224
        param_names = set(op.input('parameters'))
Q
qiaolongfei 已提交
225 226
        param_names = filter(lambda name: all_vars[name].stop_gradient is False,
                             param_names)
227 228 229
        param_grad_names = [n + "@GRAD" for n in param_names]

        class ParallelDoCallBack(object):
Y
Yang Yang 已提交
230
            def __init__(self, param_grad_names, parallel_scopes_name):
231 232
                self.has_inserted_nccl_init = False
                self.param_grad_names = param_grad_names
Y
Yang Yang 已提交
233
                self.parallel_scopes_name = parallel_scopes_name
234 235

            def __call__(self, block, context):
Y
Yang Yang 已提交
236
                if not self.has_inserted_nccl_init:
Y
Yang Yang 已提交
237
                    op_desc = _create_op_desc_(
Y
Yang Yang 已提交
238 239
                        "ncclInit",
                        {"parallel_scopes": self.parallel_scopes_name},
Y
Yang Yang 已提交
240 241 242
                        {"Communicator": ['nccl_com__do_not_change_']}, {})
                    block.program.global_block().desc.append_op().copy_from(
                        op_desc)
Y
Yang Yang 已提交
243 244 245 246 247
                    self.has_inserted_nccl_init = True

                current_op_desc = context["__current_op_desc__"]
                for o_param in current_op_desc.output_names():
                    for o_argu in current_op_desc.output(o_param):
248
                        if o_argu in self.param_grad_names:
Y
Yang Yang 已提交
249 250
                            allreduce_out_name = o_argu + "__nccl_all_reduce__"
                            op_desc = _create_op_desc_(
C
chengduoZH 已提交
251 252
                                "ncclReduce",
                                {
Y
Yang Yang 已提交
253
                                    "X": [o_argu],
Y
Yang Yang 已提交
254 255
                                    "Communicator":
                                    ['nccl_com__do_not_change_']
C
chengduoZH 已提交
256 257 258 259
                                },
                                {"Out": [allreduce_out_name]},
                                {"reduction": "ncclSum",
                                 "root": 0}, )
Y
Yang Yang 已提交
260 261 262 263 264 265
                            block.desc.append_op().copy_from(op_desc)

                            op_desc = _create_op_desc_(
                                "assign", {"X": [allreduce_out_name]},
                                {"Out": [o_argu]}, {})
                            block.desc.append_op().copy_from(op_desc)
266

Y
Yang Yang 已提交
267 268
        return ParallelDoCallBack(param_grad_names,
                                  op.output("parallel_scopes"))
269 270 271 272
    else:
        return None


273 274
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
275 276 277
                          target_block,
                          no_grad_dict,
                          grad_to_var,
Y
Yang Yang 已提交
278
                          callbacks=None):
279 280 281 282 283
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
284
        ops(Op): the forward operators whose backward ops need to be added
285
        target_block(Block): the block which is going to hold new generated grad ops
286
        no_grad_dict(dict):
287 288 289 290 291
            key(int)  block index
            val(set) a set of varibale names. These varibales have no gradient
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
F
fengjiayi 已提交
292
        callback(callable object): a callable object used to decorate new generated grad ops
293
    """
Y
Yang Yang 已提交
294
    if callbacks is not None:
Y
Yang Yang 已提交
295 296 297 298
        assert (isinstance(callbacks, list))
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
299

F
fengjiayi 已提交
300
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
301 302
    grad_op_descs = []
    program = block.program
303
    for op in reversed(ops):
F
fengjiayi 已提交
304 305 306 307
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
            sub_block = program.block(op.block_attr("sub_block"))
Y
Yu Yang 已提交
308 309
            grad_sub_block = program.create_block()
            grad_sub_block.set_forward_block_idx(sub_block.idx)
Y
Yang Yang 已提交
310 311 312 313 314 315 316 317
            cb = _callback_lookup_(op)
            if cb is not None:
                if callbacks is None:
                    new_callbacks = [cb]
                else:
                    new_callbacks = callbacks + [_callback_lookup_(op)]
                _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
                                      no_grad_dict, grad_to_var, new_callbacks)
Y
Yang Yang 已提交
318
            else:
Y
Yang Yang 已提交
319 320
                _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
                                      no_grad_dict, grad_to_var, callbacks)
Y
Yu Yang 已提交
321 322

            program.rollback()
F
fengjiayi 已提交
323 324
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
325
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
326 327
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
            op.desc, no_grad_dict[block.idx], grad_sub_block_list)
Y
Yang Yu 已提交
328

F
fengjiayi 已提交
329 330 331 332 333 334 335
        grad_op_descs.extend(grad_op_desc)
        grad_to_var.update(op_grad_to_var)

    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)

    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
336

F
fengjiayi 已提交
337
    # append op_desc in grad_op_descs to target_block
F
update  
fengjiayi 已提交
338
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
339 340
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
Y
Yang Yang 已提交
341
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
342 343 344 345
        if callbacks is not None:
            assert (isinstance(callbacks, list))
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
346

F
fengjiayi 已提交
347 348

def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
349 350 351 352 353 354 355 356 357 358 359 360
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
361
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
362
    """
F
fengjiayi 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
            sub_block = block.program.block(op_desc.block_attr("sub_block"))
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
            grad_var_name = grad_var_name.encode("ascii")
            if block.desc.has_var_recursive(
                    grad_var_name) or grad_var_name == core.empty_var_name():
                continue
            block.desc.var(grad_var_name)
            new_vars.add(grad_var_name)
            if not grad_to_var.has_key(grad_var_name):
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
Y
Yang Yang 已提交
383 384 385
        # ncclInit dones't need to set data_type
        if op_desc.type() == 'ncclInit':
            continue
F
fengjiayi 已提交
386 387 388
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_(arg, block)
F
update  
fengjiayi 已提交
389 390


391 392 393 394 395 396 397 398 399 400
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
                op_desc.rename_input(name, var_map[name])

        for name in op_desc.output_arg_names():
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
401
                new_name = unique_name.generate(name)
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
                op_desc.rename_output(name, new_name)
                var_map[name] = new_name

    for g, ng in var_map.iteritems():
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
        for var in block.vars.itervalues():
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


Y
Yang Yang 已提交
425 426
def append_backward(loss, parameter_list=None, no_grad_set=None,
                    callbacks=None):
427
    """
F
fengjiayi 已提交
428 429 430 431
    Append backward part to main_program

    Args:
        loss(Variable): The variable generated by cost function.
432 433
        parameter_list(list[string]): Parameters that need to be updated by
            optimizer. If None, it means all parameters need to be updated.
434
        no_grad_set(set): Variables that have no gradients in Block 0.
435 436
            All variables with `step_gradient=True` from all blocks will be
            automatically added.
F
fengjiayi 已提交
437 438

    Return:
439
        (list[(Variable,Variable)]): list of (parameter, gradient) pair.
440 441
    """
    assert isinstance(loss, framework.Variable)
Y
Yang Yang 已提交
442 443
    if callbacks is not None:
        isinstance(callbacks, list)
Y
Yu Yang 已提交
444

F
fengjiayi 已提交
445
    program = loss.block.program
F
fengjiayi 已提交
446
    if no_grad_set is None:
447 448 449 450
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(program)
    no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))
Y
Yu Yang 已提交
451

F
update  
fengjiayi 已提交
452
    grad_info_map = dict()
F
fengjiayi 已提交
453
    root_block = program.block(0)
F
fengjiayi 已提交
454

F
fengjiayi 已提交
455 456
    fwd_op_num = root_block.desc.op_size()
    current_block_idx = program.current_block_idx
F
fengjiayi 已提交
457 458
    grad_to_var = dict()

459 460 461 462
    op_desc = _create_op_desc_("fill_constant", {}, {
        "Out": [_append_grad_suffix_(loss.name)]
    }, {"shape": [1],
        "value": 1.0,
463 464
        "dtype": loss.dtype,
        "force_cpu": False})
465 466 467 468 469 470 471
    root_block.desc.append_op().copy_from(op_desc)

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
    no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))

    _append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
Y
Yang Yang 已提交
472
                          grad_to_var, callbacks)
473 474 475 476 477 478

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(root_block, fwd_op_num, grad_to_var, {})

F
fengjiayi 已提交
479
    _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map)
F
fengjiayi 已提交
480

F
fengjiayi 已提交
481 482
    program.current_block_idx = current_block_idx
    program.sync_with_cpp()
C
chengduoZH 已提交
483 484
    # FIXME(zcd): prevent loss.grad optimized by mem_opt.
    loss.block.var(_append_grad_suffix_(loss.name)).persistable = True
F
fengjiayi 已提交
485

486 487 488
    if parameter_list is not None:
        parameters = parameter_list
    else:
F
fengjiayi 已提交
489
        params = program.global_block().all_parameters()
490
        parameters = [param.name for param in params]
491

492 493
    params_and_grads = []
    for param in parameters:
F
update  
fengjiayi 已提交
494
        if param not in grad_info_map:
F
fengjiayi 已提交
495
            continue
F
update  
fengjiayi 已提交
496
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
497
        grad_block = grad_info[1]
498 499 500 501
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
502
        param_var = program.global_block().var(param)
503 504 505 506 507 508
        grad_var = grad_block.var(grad_info[0])
        if loss.block.has_var(grad_info[0]):
            params_and_grads.append((param_var, grad_var))
        else:
            params_and_grads.append((param_var, None))
    return params_and_grads
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


def _find_op_path_(block, outputs, inputs, no_grad_set):
    """
    no_grad_set will also be changed
    """
    input_names = set([inp.name for inp in inputs])
    output_names = set([out.name for out in outputs])

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
            if _some_in_set_(op.desc.input_arg_names(), input_names):
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
        if _some_in_set_(op.desc.output_arg_names(), output_names):
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
                if name not in input_names:
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
    Backpropagate the graidents of targets to inputs.

    Args:
        targets(Variable|list[Variable]): The target variables
        inputs(Variable|list[Variable]): The input variables
        no_grad_set(set[string]): The names of variables that have no gradients
            in Block 0. All variables with `stop_gradient=True` from all blocks
            will be automatically added.

    Return:
        (list[Variable]): list of gradients for inputs
        If an input does not affect targets, the corresponding gradient variable
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(prog)
    no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))

    fwd_op_num = block.desc.op_size()

    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
            op_desc = _create_op_desc_("fill_constant_batch_size_like",
                                       {"Input": [target.name]},
                                       {"Out": [grad_name]}, {
                                           "shape": target.shape,
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                           'input_dim_idx': 0,
                                           'output_dim_idx': 0
                                       })
            block.desc.append_op().copy_from(op_desc)
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
    no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))
    grad_to_var = dict()
    grad_info_map = dict()
    _append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var)

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
    prog.sync_with_cpp()

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars