sum_op.cu 9.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zhaoyuchen2018 已提交
11 12

#include <paddle/fluid/platform/device_context.h>
13

Z
zhaoyuchen2018 已提交
14
#include "paddle/fluid/framework/op_registry.h"
15
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
16
#include "paddle/fluid/operators/sum_op.h"
C
chengduo 已提交
17
#include "paddle/fluid/platform/float16.h"
18

Z
zhaoyuchen2018 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
namespace plat = paddle::platform;

namespace paddle {
namespace operators {

#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))

using LoDTensor = framework::LoDTensor;

template <class T>
__global__ void Sum2CUDAKernel(const T *in_0, const T *in_1, T *out,
                               int64_t N) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    out[id] = in_0[id] + in_1[id];
    id += blockDim.x * gridDim.x;
  }
}

template <class T>
__global__ void SumArrayCUDAKernel(T **in, T *out, int64_t N, size_t in_size,
                                   bool read_dst) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
43
    T total(read_dst ? out[id] : static_cast<T>(0));
Z
zhaoyuchen2018 已提交
44 45 46 47 48 49
    for (int i = 0; i < in_size; ++i) {
      const T *tmp = in[i];
      if (tmp) {
        total += tmp[id];
      }
    }
50
    out[id] = total;
Z
zhaoyuchen2018 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    id += blockDim.x * gridDim.x;
  }
}

template <class T>
__global__ void SumSelectedRowsCUDAKernel(T **sr_in_out, int64_t N,
                                          size_t rows) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    for (int i = 0; i < 2 * rows; i += 2) {
      const T *tmp = sr_in_out[i];
      T *tmp_out = sr_in_out[i + 1];
      if (tmp && tmp_out) {
        tmp_out[id] += tmp[id];
      }
    }
    id += blockDim.x * gridDim.x;
  }
}

template <class T>
72
void SumToLoDTensor(const framework::ExecutionContext &context) {
Z
zhaoyuchen2018 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  auto in_vars = context.MultiInputVar("X");
  const size_t in_num = in_vars.size();

  constexpr size_t theory_sm_threads = 1024;
  auto &dev_ctx =
      context.template device_context<platform::CUDADeviceContext>();
  auto stream = dev_ctx.stream();

  auto max_threads = dev_ctx.GetMaxPhysicalThreadCount();
  auto sm_count = max_threads / theory_sm_threads;
  size_t tile_size = 0;
  dim3 grids;
  dim3 blocks;

  auto ComputeKernelParameter = [&](size_t length) {
    if (length >= max_threads)
      tile_size = 1024;
    else if (length < max_threads && length > sm_count * 128)
      tile_size = 512;
    else if (length <= sm_count * 128)
      tile_size = 256;
    grids = dim3(CEIL_DIV(length, tile_size), 1, 1);
    blocks = dim3(tile_size, 1, 1);
  };

  auto *out = context.Output<LoDTensor>("Out");
99
  bool in_place = in_vars[0] == context.OutputVar("Out");
100

Z
zhaoyuchen2018 已提交
101
  if (!in_place) {
102 103 104 105 106 107 108
    auto *out_ptr = out->mutable_data<T>(context.GetPlace());
    if (in_num >= 1 && in_vars[0]->IsType<framework::LoDTensor>()) {
      auto &in_0_tensor = in_vars[0]->Get<framework::LoDTensor>();
      if (in_0_tensor.numel() > 0) {
        in_place = (in_0_tensor.data<T>() == out_ptr);
      }
    }
Z
zhaoyuchen2018 已提交
109 110
  }

111 112 113 114 115
  // Sum of two tensors
  if (in_num == 2 && in_vars[0]->IsType<framework::LoDTensor>() &&
      in_vars[1]->IsType<framework::LoDTensor>()) {
    auto &in_0 = in_vars[0]->Get<framework::LoDTensor>();
    auto &in_1 = in_vars[1]->Get<framework::LoDTensor>();
116 117 118
    int64_t length_0 = in_0.numel();
    int64_t length_1 = in_1.numel();
    if (length_0 && length_1 && in_0.IsInitialized() && in_1.IsInitialized()) {
119 120 121 122 123
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      auto in_0_e = EigenVector<T>::Flatten(in_0);
      auto in_1_e = EigenVector<T>::Flatten(in_1);
      result.device(place) = in_0_e + in_1_e;
124
    } else if (length_0 && in_0.IsInitialized()) {
125 126 127
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      result.device(place) = EigenVector<T>::Flatten(in_0);
128
    } else if (length_1 && in_1.IsInitialized()) {
129 130 131
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      result.device(place) = EigenVector<T>::Flatten(in_1);
Z
zhaoyuchen2018 已提交
132
    }
133
    return;
Z
zhaoyuchen2018 已提交
134
  }
135 136

  int start = in_place ? 1 : 0;
Z
zhaoyuchen2018 已提交
137
  if (!in_place) {
138
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> constant_functor;
Z
zhaoyuchen2018 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151
    constant_functor(
        context.template device_context<platform::CUDADeviceContext>(), out,
        static_cast<T>(0));
  }

  std::vector<const T *> in_data;
  std::vector<int> selectrow_index;
  int64_t lod_length = 0;
  bool dst_write = false;
  for (int i = start; i < in_num; ++i) {
    if (in_vars[i]->IsType<framework::LoDTensor>()) {
      auto &in_i = in_vars[i]->Get<framework::LoDTensor>();
      lod_length = in_i.numel();
152 153 154
      if (lod_length && in_i.IsInitialized()) {
        in_data.emplace_back(in_i.data<T>());
      }
155
    } else if (in_vars[i]->IsType<phi::SelectedRows>()) {
Z
zhaoyuchen2018 已提交
156 157 158 159
      selectrow_index.push_back(i);
    }
  }

160
  // compute select rows separately.
Z
zhaoyuchen2018 已提交
161 162 163 164 165
  if (!selectrow_index.empty()) {
    std::vector<const T *> sr_in_out_data;
    size_t rows = 0;
    int64_t length = 0;
    for (auto index : selectrow_index) {
166
      auto &sr = in_vars[index]->Get<phi::SelectedRows>();
Z
zhaoyuchen2018 已提交
167 168 169 170 171 172
      auto &sr_value = sr.value();
      auto &sr_rows = sr.rows();

      auto row_numel = sr_value.numel() / sr_rows.size();
      auto out_dims = out->dims();

173 174 175 176 177 178 179 180 181 182 183 184
      PADDLE_ENFORCE_EQ(sr.height(), out_dims[0],
                        platform::errors::InvalidArgument(
                            "The table height of input must be same as output, "
                            "but received input height is %d"
                            ", output height is %d",
                            sr.height(), out_dims[0]));
      PADDLE_ENFORCE_EQ(row_numel, out->numel() / sr.height(),
                        platform::errors::InvalidArgument(
                            "The table width of input must be same as output, "
                            "but received input width is %d"
                            ", output width is %d",
                            row_numel, out->numel() / sr.height()));
Z
zhaoyuchen2018 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197

      auto *sr_data = sr_value.data<T>();
      auto *sr_out_data = out->data<T>();
      rows += sr_rows.size();
      length = row_numel;

      for (size_t i = 0; i < sr_rows.size(); ++i) {
        sr_in_out_data.emplace_back(&sr_data[i * row_numel]);
        sr_in_out_data.emplace_back(&sr_out_data[sr_rows[i] * row_numel]);
      }
    }
    if (!sr_in_out_data.empty()) {
      auto tmp_sr_in_out_array =
198
          memory::Alloc(dev_ctx, sr_in_out_data.size() * sizeof(T *));
Z
zhaoyuchen2018 已提交
199

200 201
      memory::Copy(dev_ctx.GetPlace(), tmp_sr_in_out_array->ptr(),
                   platform::CPUPlace(),
Z
zhaoyuchen2018 已提交
202 203 204 205 206 207 208
                   reinterpret_cast<void *>(sr_in_out_data.data()),
                   sr_in_out_data.size() * sizeof(T *), dev_ctx.stream());

      T **sr_in_out_array_data =
          reinterpret_cast<T **>(tmp_sr_in_out_array->ptr());

      ComputeKernelParameter(length);
209 210
      SumSelectedRowsCUDAKernel<T>
          <<<grids, blocks, 0, stream>>>(sr_in_out_array_data, length, rows);
Z
zhaoyuchen2018 已提交
211 212 213 214 215
      dst_write = true;
    }
  }
  // if indata not null, merge into one kernel call.
  if (!in_data.empty()) {
216
    auto tmp_in_array = memory::Alloc(dev_ctx, in_data.size() * sizeof(T *));
Z
zhaoyuchen2018 已提交
217

218
    memory::Copy(dev_ctx.GetPlace(), tmp_in_array->ptr(), platform::CPUPlace(),
Z
zhaoyuchen2018 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
                 reinterpret_cast<void *>(in_data.data()),
                 in_data.size() * sizeof(T *), dev_ctx.stream());

    T **in_array_data = reinterpret_cast<T **>(tmp_in_array->ptr());
    ComputeKernelParameter(lod_length);
    SumArrayCUDAKernel<T><<<grids, blocks, 0, stream>>>(
        in_array_data, out->data<T>(), lod_length, in_data.size(),
        dst_write | in_place);
  }
}

template <typename T>
class SumKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto out_var = context.OutputVar("Out");

    if (out_var->IsType<framework::LoDTensor>()) {
238
      SumToLoDTensor<T>(context);
239
    } else if (out_var->IsType<phi::SelectedRows>()) {
Z
zhaoyuchen2018 已提交
240 241 242 243
      SelectedRowsCompute<platform::CUDADeviceContext, T>(context);
    } else if (out_var->IsType<framework::LoDTensorArray>()) {
      LodTensorArrayCompute<platform::CUDADeviceContext, T>(context);
    } else {
244
      PADDLE_THROW(platform::errors::InvalidArgument(
245
          "Expected type of Output(out) must be Tensor,  SelectedRows or "
246 247 248
          "LodTensorArray. But got "
          "unsupport type: %s.",
          framework::ToTypeName(out_var->Type())));
Z
zhaoyuchen2018 已提交
249 250 251 252 253 254
    }
  }
};
}  // namespace operators
}  // namespace paddle

255
namespace ops = paddle::operators;
C
chengduo 已提交
256
namespace plat = paddle::platform;
Q
QI JUN 已提交
257 258 259 260
REGISTER_OP_CUDA_KERNEL(
    sum, ops::SumKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SumKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SumKernel<paddle::platform::CUDADeviceContext, int>,
C
chengduo 已提交
261
    ops::SumKernel<paddle::platform::CUDADeviceContext, int64_t>,
262 263
    ops::SumKernel<paddle::platform::CUDADeviceContext, plat::float16>,
    ops::SumKernel<paddle::platform::CUDADeviceContext, plat::bfloat16>);