interpolate_mkldnn_op.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/operators/interpolate_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using dnnl::memory;
using dnnl::primitive;
using dnnl::reorder;
using dnnl::resampling_forward;
26 27
using dnnl::stream;
using framework::DataLayout;
28 29 30 31 32
using platform::GetMKLDNNFormat;
using platform::to_void_cast;

template <typename T = float>
class InterpolateMKLDNNHandler
33
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::resampling_forward> {
34 35 36
 public:
  InterpolateMKLDNNHandler(const dnnl::algorithm algo,
                           const dnnl::engine engine, platform::Place cpu_place,
37
                           const Tensor* x, Tensor* out)
38 39
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::resampling_forward>(
            engine, cpu_place) {
40
    const auto dst_tz = phi::vectorize(out->dims());
41 42 43
    const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                     MKLDNNMemoryFormat::any);
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_inference,
44
                                            algo, x->mem_desc(), dst_md);
45 46 47 48 49 50 51 52
  }
};

template <typename T = float>
class InterpolateMKLDNNKernel : public framework::OpKernel<T> {
  std::vector<int> ComputeOutputShape(
      const framework::ExecutionContext& ctx) const {
    const auto* x = ctx.Input<Tensor>("X");
53 54 55 56
    const auto& in_dims = x->dims();

    const framework::DDim in_dhw_dims =
        phi::slice_ddim(in_dims, 2, in_dims.size());
57 58

    std::vector<int> out_dims;
59
    out_dims.reserve(5);
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    if (in_dhw_dims.size() == 1) {
      out_dims.push_back(ctx.Attr<int>("out_w"));
    } else if (in_dhw_dims.size() == 2) {
      out_dims.push_back(ctx.Attr<int>("out_h"));
      out_dims.push_back(ctx.Attr<int>("out_w"));
    } else if (in_dhw_dims.size() == 3) {
      out_dims.push_back(ctx.Attr<int>("out_d"));
      out_dims.push_back(ctx.Attr<int>("out_h"));
      out_dims.push_back(ctx.Attr<int>("out_w"));
    }

    auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (list_new_size_tensor.size() > 0) {
      auto new_size = get_new_shape(list_new_size_tensor);
      if (new_size.size() == out_dims.size()) {
        out_dims = new_size;
      }
    } else if (out_size != nullptr) {
      auto out_size_data = get_new_data_from_tensor<int>(out_size);
      if (out_size_data.size() == out_dims.size()) {
        out_dims = out_size_data;
      }
    } else {
84 85
      std::vector<float> scale;
      scale.reserve(3);
86 87 88
      auto scale_tensor = ctx.Input<Tensor>("Scale");
      if (scale_tensor != nullptr) {
        auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
89 90
        scale.resize(3, scale_data[0]);
        std::copy(scale_data.begin(), scale_data.end(), scale.begin());
91
      } else {
92 93 94 95 96 97 98 99
        std::string op_type = ctx.Type();

        if (op_type.find("v2") == std::string::npos) {  // v1
          scale.push_back(ctx.Attr<float>("scale"));
          scale.push_back(scale[0]);
          scale.push_back(scale[0]);
        } else {  // v2
          std::vector<float> scale_attr = ctx.Attr<std::vector<float>>("scale");
100 101 102 103
          if (scale_attr.size() > 0) {
            scale.resize(3, scale_attr[0]);
            std::copy(scale_attr.begin(), scale_attr.end(), scale.begin());
          }
104
        }
105
      }
106 107
      if (scale[0] > 0.0f && scale[1] > 0.0f && scale[2] > 0.0f) {
        int j = 0;
108
        std::vector<int64_t> in_dhw_vec = phi::vectorize(in_dhw_dims);
109 110
        std::transform(
            in_dhw_vec.begin(), in_dhw_vec.end(), out_dims.begin(),
111
            [&](int64_t i) -> int { return static_cast<int>(i * scale[j++]); });
112 113 114 115 116
      }
    }

    PADDLE_ENFORCE_GT(std::all_of(out_dims.begin(), out_dims.end(),
                                  [](int i) { return i > 0; }),
117 118 119 120
                      0,
                      platform::errors::InvalidArgument(
                          "out_d, out_h, out_w of Op(interpolate) "
                          "should be greater than 0."));
121

122 123
    const std::vector<int64_t> nc_dims = {in_dims[0], in_dims[1]};
    out_dims.insert(out_dims.begin(), nc_dims.begin(), nc_dims.end());
124 125 126 127 128 129 130 131 132 133
    return out_dims;
  }

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<Tensor>("X");
134
    auto* out = ctx.Output<Tensor>("Out");
135

136 137 138 139
    const auto interp_method = ctx.Attr<std::string>("interp_method");
    const dnnl::algorithm algo = (interp_method == "nearest")
                                     ? dnnl::algorithm::resampling_nearest
                                     : dnnl::algorithm::resampling_linear;
140

141
    const auto out_dims_vec = ComputeOutputShape(ctx);
142
    framework::DDim dim_out = phi::make_ddim(out_dims_vec);
143
    out->Resize(dim_out);
144

145
    InterpolateMKLDNNHandler<T> handler(algo, mkldnn_engine, ctx.GetPlace(), x,
146
                                        out);
147 148

    auto src_memory_p = handler.AcquireSrcMemory(x);
149
    auto dst_memory_p = handler.AcquireDstMemory(out);
150 151 152 153

    auto resampling_prim = handler.AcquireForwardPrimitive();
    const std::unordered_map<int, dnnl::memory> args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
154
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
155

156 157 158
    resampling_prim->execute(astream, args);
    astream.wait();

159
    out->set_mem_desc(dst_memory_p->get_desc());
160 161 162 163 164 165 166 167 168
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(nearest_interp, MKLDNN, ::paddle::platform::CPUPlace,
169 170 171
                   ops::InterpolateMKLDNNKernel<float>,
                   ops::InterpolateMKLDNNKernel<int8_t>,
                   ops::InterpolateMKLDNNKernel<uint8_t>);
172 173
REGISTER_OP_KERNEL(bilinear_interp, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::InterpolateMKLDNNKernel<float>);
174 175

REGISTER_OP_KERNEL(nearest_interp_v2, MKLDNN, ::paddle::platform::CPUPlace,
176
                   ops::InterpolateMKLDNNKernel<float>,
177
                   ops::InterpolateMKLDNNKernel<paddle::platform::bfloat16>,
178 179
                   ops::InterpolateMKLDNNKernel<int8_t>,
                   ops::InterpolateMKLDNNKernel<uint8_t>);
180 181
REGISTER_OP_KERNEL(bilinear_interp_v2, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::InterpolateMKLDNNKernel<float>);