reducer.cc 47.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/reducer.h"

17 18
#include <iostream>

19
#include "paddle/fluid/framework/tensor_util.h"
20
#include "paddle/fluid/imperative/layer.h"
21
#include "paddle/fluid/imperative/parallel_context.h"
22 23
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
24
#include "paddle/fluid/string/string_helper.h"
25
#include "paddle/phi/core/dense_tensor.h"
26 27 28
namespace paddle {
namespace imperative {

K
kuizhiqing 已提交
29 30
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||     \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO) || \
Z
zn 已提交
31
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CNCL)
32 33 34 35
// div the nranks
void Group::DivNRanks(const platform::DeviceContext &context, int64_t nranks) {
  framework::Tensor *tensor =
      is_sparse_
36
          ? sparse_contents_->GetMutable<phi::SelectedRows>()->mutable_value()
37 38 39
          : dense_contents_.GetMutable<framework::LoDTensor>();

  if (platform::is_gpu_place(tensor->place())) {
40
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
41 42
    DivNRanks(tensor, nranks, context);
#endif
K
kuizhiqing 已提交
43 44 45
  } else if (platform::is_npu_place(tensor->place())) {
    // TODO(kuizhiqing)
    VLOG(4) << "divnrank for npu not support yet";
46
  } else if (platform::is_cpu_place(tensor->place())) {
47 48
    VLOG(4) << "before div 2" << *tensor;
    VLOG(4) << "NDiv for cpu devices : rank = " << nranks;
49 50 51 52 53 54
#ifdef PADDLE_WITH_HIP
    if (dtype_ == paddle::framework::proto::VarType_Type_BF16) {
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Unsupport BF16 in DataParallel for now"));
    }
    framework::VisitDataTypeForHIP(
55 56
        dtype_, DivNRanksForAllReduce<platform::CPUDeviceContext>(
                    tensor, nranks, context));
57 58 59 60 61
#else
    framework::VisitDataType(dtype_,
                             DivNRanksForAllReduce<platform::CPUDeviceContext>(
                                 tensor, nranks, context));
#endif
62
    VLOG(4) << "after div 2" << *tensor;
63 64 65 66
  } else if (platform::is_xpu_place(tensor->place())) {
#ifdef PADDLE_WITH_XPU_BKCL
// TODO(liuyuhui) support xpu about div nranks in the future
#endif
Z
zn 已提交
67 68 69
  } else if (platform::is_mlu_place(tensor->place())) {
    // TODO(zhangna)
    VLOG(4) << "divnrank for mlu not support yet";
70 71 72
  }
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
template <typename DeviceContext, typename T>
static void ConcatTensorsForAllReduce(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents) {
  operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
  concat_functor_(context, dense_tensors_, 0,
                  p_dense_contents->GetMutable<framework::LoDTensor>());
}

template <typename DeviceContext, typename T>
static void SplitTensorsForAllReduce(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());
93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  // Sometimes direct copies will be faster
  if (p_dense_tensors->size() < 10) {
    operators::StridedMemcpyWithAxis0<T>(context, *in, shape_refer, &outs);
  } else {
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
}

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
115
    case framework::proto::VarType::FP16:
116 117
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
118 119
      break;
    case framework::proto::VarType::FP32:
120 121
      ConcatTensorsForAllReduce<DeviceContext, float>(context, dense_tensors_,
                                                      p_dense_contents);
122 123
      break;
    case framework::proto::VarType::FP64:
124 125
      ConcatTensorsForAllReduce<DeviceContext, double>(context, dense_tensors_,
                                                       p_dense_contents);
126 127 128 129 130
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
131
          framework::DataTypeToString(type)));
132 133 134 135
  }
}

// context is used to select the stream for split
136 137 138 139 140 141
template <typename DeviceContext>
static void SplitTensorsWithType(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
142
    case framework::proto::VarType::FP16:
143 144
      SplitTensorsForAllReduce<DeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
145 146
      break;
    case framework::proto::VarType::FP32:
147 148
      SplitTensorsForAllReduce<DeviceContext, float>(context, p_dense_contents,
                                                     p_dense_tensors);
149 150
      break;
    case framework::proto::VarType::FP64:
151 152
      SplitTensorsForAllReduce<DeviceContext, double>(context, p_dense_contents,
                                                      p_dense_tensors);
153 154 155 156 157
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
158 159 160 161
          framework::DataTypeToString(type)));
  }
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#ifdef PADDLE_WITH_XPU_BKCL
template <>
void SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());

  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  operators::math::SplitFunctor<platform::XPUDeviceContext, float>
      split_functor_;
  split_functor_(context, *in, shape_refer, 0, &outs);
}

// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
      break;
K
kuizhiqing 已提交
216 217 218 219 220 221 222 223 224
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}
#endif

Z
zn 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
#ifdef PADDLE_WITH_CNCL
// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::MLUDeviceContext>(
    const platform::MLUDeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP16:
      ConcatTensorsForAllReduce<platform::MLUDeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
      break;
    case framework::proto::VarType::FP32:
      ConcatTensorsForAllReduce<platform::MLUDeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::MLUDeviceContext>(
    const platform::MLUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP16:
      SplitTensorsForAllReduce<platform::MLUDeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
      break;
    case framework::proto::VarType::FP32:
      SplitTensorsForAllReduce<platform::MLUDeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}
#endif

275 276 277
void Group::ConcatTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
278
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
279 280 281 282 283 284 285
    ConcatTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
286 287 288 289 290 291 292 293 294 295
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    ConcatTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat xpu grads since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
296 297 298 299 300 301 302 303 304 305
#endif
  } else if (platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    ConcatTensorsWithType(
        static_cast<const platform::NPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat npu grads since it's not compiled with HCCL,"
        "Please recompile or reinstall Paddle with HCCL support."));
Z
zn 已提交
306 307 308 309 310 311 312 313 314 315
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_CNCL
    ConcatTensorsWithType(
        static_cast<const platform::MLUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat mlu grads since it's not compiled with CNCL,"
        "Please recompile or reinstall Paddle with CNCL support."));
316 317 318 319 320 321 322 323 324 325 326 327 328 329
#endif
  } else if (platform::is_cpu_place(place)) {
    ConcatTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

void Group::SplitTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
330
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
331 332 333 334 335 336 337
    SplitTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
338 339 340 341 342 343 344 345 346 347
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    SplitTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split xpu grad since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
348 349 350 351 352 353 354 355 356 357
#endif
  } else if (platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    SplitTensorsWithType(
        static_cast<const platform::NPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split npu grad since it's not compiled with HCCL,"
        "Please recompile or reinstall Paddle with HCCL support."));
Z
zn 已提交
358 359 360 361 362 363 364 365 366 367
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_CNCL
    SplitTensorsWithType(
        static_cast<const platform::MLUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split mlu grad since it's not compiled with CNCL,"
        "Please recompile or reinstall Paddle with CNCL support."));
368 369 370 371 372 373 374 375
#endif
  } else if (platform::is_cpu_place(place)) {
    SplitTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
376 377 378 379 380
  }
}

std::ostream &operator<<(std::ostream &out, const Group &group) {
  const auto &vars = group.variable_indices_;
381
  out << "numel: " << group.all_length_ << " ;is_sparse: " << group.is_sparse_
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
      << " ;var number: " << vars.size() << "\n";
  auto begin = vars.begin();
  auto end = vars.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

397 398 399
Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
                 const std::vector<std::vector<size_t>> &group_indices,
                 const std::vector<bool> &is_sparse_gradient,
400
                 std::shared_ptr<imperative::ParallelContext> parallel_ctx,
401 402
                 const std::vector<size_t> &group_size_limits,
                 bool find_unused_vars)
403 404 405
    : vars_(vars),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
406
      parallel_ctx_(parallel_ctx),
407
      group_size_limits_(group_size_limits),
408
      find_unused_vars_each_step_(find_unused_vars) {
409
  VLOG(3) << "Start construct the Reducer ...";
410
  nrings_ = parallel_ctx->GetNRings();
411
  nranks_ = parallel_ctx->GetNRanks();
412 413 414 415
#ifdef PADDLE_WITH_XPU_BKCL
  comm_pool_.reset(new ::ThreadPool(1));
  comm_op_count_ = 0;
#endif
416 417
  // initialize groups
  InitializeGroups(group_indices);
418 419
  for (size_t global_var_index = 0; global_var_index < vars_.size();
       ++global_var_index) {
420
    auto var = vars_[global_var_index];
421 422
    var->GradVarBase()->AddVoidHook(std::make_shared<std::function<void()>>(
        [=]() { this->AddDistHook(global_var_index); }));
423
    var_index_map_[var->GradVarBase()->SharedVar().get()] = global_var_index;
424
  }
425 426 427 428 429 430

  // for checking var is ready once
  vars_marked_ready_.resize(vars_.size(), false);

  // Initialize local used vars
  local_used_vars_.resize(vars_.size(), 0);
431 432
}

433
void Reducer::InitializeDenseGroups(
434 435 436 437 438
    const std::vector<size_t> &variable_indices_, Group *p_group) {
  int64_t all_length = 0;
  for (size_t index = 0; index < variable_indices_.size(); ++index) {
    const auto variable_index = variable_indices_[index];
    const auto &var = vars_[variable_index];
439
    const auto &var_name = var->Name();
440 441
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[variable_index], false,
                      platform::errors::PreconditionNotMet(
442
                          "Tensor %s's GRAD must be LoDTensor, but received "
443 444 445 446 447 448
                          "GRAD is SelectedRows",
                          var_name));

    auto lod_tensor = var->MutableVar()->GetMutable<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(lod_tensor->IsInitialized(), true,
                      platform::errors::PreconditionNotMet(
449
                          "Tensor %s is not initialized.", var_name));
450
    const auto size = lod_tensor->numel();
451
    PADDLE_ENFORCE_GT(
452 453 454
        size, 0,
        platform::errors::PreconditionNotMet(
            "The number of tensor %s's elements is 0.", var_name));
455 456 457 458
    all_length += size;

    p_group->length_.push_back(size);

459 460 461
    // for concat operator
    p_group->dense_tensors_.push_back(framework::Tensor());

462
    // check the dtype and place, it must be same.
463 464
    const auto &dtype = var->DataType();
    const auto &place = var->Place();
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    if (index > 0) {
      PADDLE_ENFORCE_EQ(
          dtype, p_group->dtype_,
          platform::errors::PreconditionNotMet(
              "Tensor %s has different dtype. Expected dtype is %s, but actual "
              "dtype is %s",
              var_name, framework::DataTypeToString(p_group->dtype_),
              framework::DataTypeToString(dtype)));
      PADDLE_ENFORCE_EQ(place, place_,
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different place. Expected place is "
                            "%s, but actual place is %s",
                            var_name, place_, place));
    } else {
      p_group->dtype_ = dtype;
      place_ = place;
    }
  }
483
  p_group->all_length_ = all_length;
484 485 486 487 488
}

// Each parameter will be initialized according to the group information.
// For the sparse parameter, sparse_contents_ in the group directly points
// to the parameter. For dense parameters, first construct an empty Tensor().
489
// Then specify the actual memory in MarkDenseVarReady.
490 491 492 493 494 495
void Reducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";
  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());
496 497
  variable_locators_.clear();
  variable_locators_.resize(vars_.size());
498 499 500 501 502 503 504

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &variable_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
        variable_indices_.size(), 0,
        platform::errors::PreconditionNotMet(
505
            "The number of group[%d]'s elements is 0.", group_index));
506 507 508 509 510 511 512 513 514 515 516
    Group group;

    // It's just for check the sparse or dense
    auto first_varbase = vars_[variable_indices_.front()];
    if (variable_indices_.size() == 1 &&
        is_sparse_gradient_[variable_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_varbase->DataType();
      group.is_sparse_ = true;
    } else {
      // process the dense gradient.
517
      InitializeDenseGroups(variable_indices_, &group);
518
      auto tensor = group.dense_contents_.GetMutable<framework::LoDTensor>();
519
      tensor->Resize(phi::make_ddim({group.all_length_}))
520
          .mutable_data(place_, framework::TransToPhiDataType(group.dtype_));
521
    }
522 523 524

    // map variables to this group by VariableLocator
    size_t inside_group_index = 0;
525
    for (const auto var_index : variable_indices_) {
526 527 528 529 530 531
      variable_locators_[var_index] = VariableLocator{
          .group_index = group_index,
          .inside_group_index = inside_group_index++,
      };
    }
    group.variable_indices_ = std::move(variable_indices_);
532
    groups_.emplace_back(std::move(group));
533
    // Debug Message For Reducer
534
    VLOG(3) << "The Group[" << group_index << "]:" << groups_.back();
535 536 537
  }
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
void Reducer::PrepareDeps(const std::unordered_set<GradOpNode *> &init_nodes) {
  PADDLE_ENFORCE_EQ(
      node_deps_.empty(), true,
      platform::errors::AlreadyExists("Op deps must be initialized here"));

  std::queue<GradOpNode *> q;
  std::unordered_set<GradOpNode *> visited;

  for (auto pos = init_nodes.begin(); pos != init_nodes.end(); pos++) {
    q.push(*pos);
    visited.insert(*pos);
  }

  while (!q.empty()) {
    auto *cur_node = q.front();
    q.pop();

    const auto &grad_pending_nodes = cur_node->GradPendingNodes();
    for (auto &grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node should not be null"));
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
      // py_layer is not supported in DataParallel
      auto begin = grad_pending_node->begin();
      auto end = grad_pending_node->end();
      for (auto op_base = begin; op_base != end; op_base++) {
        PADDLE_ENFORCE_EQ(
            op_base->Type() != "py_layer", true,
            platform::errors::PreconditionNotMet(
                "Note: Currently PyLayer is not supported in DataParallel. For "
                "using PyLayer in a DataParallel model, you can skip gradient "
                "synchronization among multiple cards by 'no_sync', and "
                "manually implement 'all_reduce' before model optimization. "
                "There is an example showing specific implemetation processing "
                "in offical docs: https://www.paddlepaddle.org.cn/documentation"
                "/docs/api/paddle/DataParallel_cn.html"));
      }
575 576 577 578 579 580 581 582 583
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

584
void Reducer::TraverseBackwardGraph(
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
  node_deps_.clear();
  std::queue<std::shared_ptr<GradOpNode>> q;
  std::unordered_set<VariableWrapper *> var_visited;
  std::unordered_set<GradOpNode *> init_nodes;

  for (const auto &output : outputs) {
    const auto &grad_node = output->GradVarBase()->GradNode();
    if (grad_node == nullptr || output->OverridedStopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op or output is "
                 "stop_gradient=True: "
              << output->Name();
      continue;
    } else {
      init_nodes.insert(grad_node.get());
      var_visited.insert(output->SharedVar().get());
      q.push(grad_node);
    }
  }

  PrepareDeps(init_nodes);
  // Traverse the autograd graph starting at the specified output
  while (!q.empty()) {
    auto cur_node = q.front();
    q.pop();

    for (const auto &cur_op : *cur_node) {
      auto &bwd_outs = cur_op.GetOutsMap();
      for (const auto &pair : bwd_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }
        for (auto &var : pair.second) {
          if (!var || var->OverridedStopGradient()) {
            continue;
          } else {
            var_visited.insert(var.get());
          }
        }
      }
    }
    for (const auto &grad_pending_node : cur_node->GradPendingNodes()) {
      PADDLE_ENFORCE_NOT_NULL(grad_pending_node,
                              platform::errors::NotFound(
                                  "Grad pending node should not be nullptr"));
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }
      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }

  for (const auto &it : var_index_map_) {
    if (var_visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "Var[" << it.second << "] [" << it.first->Name()
              << "] is not used";
    }
  }
647
}
648

649 650 651 652 653
// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
void Reducer::PrepareForBackward(
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
  VLOG(3) << "after forward, then reset count for backward.";
654
  grad_need_hooks_ = true;
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](Group &group) {
    group.pending_ = group.variable_indices_.size();
    group.sparse_contents_ = nullptr;
  });

  // reinitialize vars_marked_ready_ for next iteration
  vars_marked_ready_.clear();
  vars_marked_ready_.resize(vars_.size(), false);

  PADDLE_ENFORCE_EQ(
      groups_need_finalize_, false,
      platform::errors::PreconditionNotMet(
          "A serious error has occurred here. Please "
          "set find_unused_parameters=True to traverse backward graph "
          "in each step to prepare reduce in advance. If you have "
          "set, There may be several reasons for this error: "
          "1) Please note that all forward outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph. "
          "2) Used multiple forwards and one backward. You may be able to wrap "
          "multiple forwards in a model."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;

  if (find_unused_vars_once_ || find_unused_vars_each_step_) {
    unused_vars_.clear();
    TraverseBackwardGraph(outputs);
    // only check once in first step
    find_unused_vars_once_ = false;
  }

  if (find_unused_vars_each_step_ && unused_vars_.empty()) {
692 693 694 695 696 697 698 699
    LOG_FIRST_N(WARNING, 1)
        << "All parameters are involved in the backward pass. "
           "It is recommended to set find_unused_parameters to False "
           "to improve performance. However, if unused parameters "
           "appear in subsequent iterative training, then an error "
           "will occur. Please make it clear that in the subsequent "
           "training, there will be no parameters that are not used "
           "in the backward pass, and then set find_unused_parameters";
700 701 702
  }

  if (unused_vars_.size() == vars_.size()) {
703 704 705 706 707 708
    LOG_FIRST_N(WARNING, 1)
        << "There is no parameter in the device involved "
           "in the backward calculation. If there are "
           "parameters on other devices involved in the "
           "backward, then a serious error will occur here.";
  }
709 710 711 712 713
}

// Add hook function to each leaf node. When the gradient of a leaf node is
// generated, if it is the sparse parameter, it will directly execute allreduce,
// if it is the dense parameter, it will execute three steps: 1,
714
// MarkDenseVarReady. Find the position of the corresponding group
715 716 717 718 719
// through var_index, share the gradient memory and the group dense_tensors,
// the group counter is reduced by 1. 2, MarkGroupReady: When the group
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
720
void Reducer::AddDistHook(size_t var_index) {
721 722 723 724 725 726
  PADDLE_ENFORCE_LT(var_index, variable_locators_.size(),
                    platform::errors::OutOfRange(
                        "Out of bounds variable index. it must be less"
                        "than %d, but it is %d",
                        variable_locators_.size(), var_index));

727 728 729 730 731
  // gradient synchronization is not required when grad_need_hooks_ is false.
  if (!grad_need_hooks_) {
    return;
  }

732 733 734
  VLOG(3) << "Var[" << var_index << "] ["
          << vars_[var_index]->GradVarBase()->Name()
          << "] arrived and triggered disthook";
735

736 737
  local_used_vars_[var_index] = 1;

738
  // rebuild group when find_unused_vars_each_step_ is false
739
  if (NeedRebuildGroup()) {
740 741 742
    rebuild_vars_.push_back(vars_[var_index]);
    rebuild_var_indices_.push_back(var_index);
  }
743

744
  if (!has_marked_unused_vars_) {
745 746 747 748 749 750
    has_marked_unused_vars_ = true;
    for (const auto &unused_index : unused_vars_) {
      MarkVarReady(unused_index, false);
    }
  }

751 752
  MarkVarReady(var_index, true);
}
753

754
void Reducer::MarkVarReady(const size_t var_index, const bool is_used_var) {
755 756
  groups_need_finalize_ = true;

757
  const auto &var_locator = variable_locators_[var_index];
758
  const auto group_index = var_locator.group_index;
759
  auto &group = groups_[group_index];
760

761 762 763 764
  // error happened, if the var is ready before.
  if (vars_marked_ready_[var_index]) {
    auto error_info = string::Sprintf(
        "Error happened, when parameter[%d][%s] has been ready before. "
765 766 767
        "Please set find_unused_parameters=True to traverse backward graph "
        "in each step to prepare reduce in advance. If you have set, "
        "there may be several reasons for this error: "
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
        "1) In multiple reentrant backward phase, some parameters are reused."
        "2) Using model parameters outside of forward function. Please "
        "make sure that model parameters are not shared in concurrent "
        "forward-backward passes.",
        var_index, vars_[var_index]->GradVarBase()->Name());

    PADDLE_ENFORCE_EQ(has_marked_unused_vars_, false,
                      platform::errors::PreconditionNotMet(error_info));

    error_info +=
        "3) Unused parameters retrieval is incorrect. "
        "The return value of forward will be used to retrieve"
        " the unused parameters of the entire model. These "
        "gradients of unused parameters will not be synchronized "
        "between multiple cards. However, if the unused "
        "parameters participate in the backward calculation "
        "again at a later time (e.g. after the forward function, "
        "the loss calculation uses the unused "
        "paramters of the forward and trigger backward), "
        "its gradient will be wrong.";

    PADDLE_ENFORCE_EQ(has_marked_unused_vars_, true,
                      platform::errors::PreconditionNotMet(error_info));
  } else {
    vars_marked_ready_[var_index] = true;
  }

795 796
  if (!group.is_sparse_) {
    // process dense group
797 798
    const auto inside_group_index = var_locator.inside_group_index;
    const auto length = group.length_[inside_group_index];
799
    auto &group_tensor = group.dense_tensors_[inside_group_index];
800

801
    if (is_used_var) {
802 803
      auto var_base = vars_[var_index]->GradVarBase();
      auto tensor = var_base->MutableVar()->GetMutable<framework::LoDTensor>();
804 805
      group_tensor.ShareDataWith(*tensor).Resize(
          {static_cast<int64_t>(length)});
806
    } else {
807 808
      // TODO(shenliang03): maybe save the memory
      // by avoiding tensor construction
809 810
      if (!group_tensor.IsInitialized()) {
        group_tensor.Resize({static_cast<int64_t>(length)});
811
        group_tensor.mutable_data(place_,
812
                                  framework::TransToPhiDataType(group.dtype_));
813 814
      }

815
#ifdef PADDLE_WITH_XPU_BKCL
816 817 818 819
      if (platform::is_xpu_place(group_tensor.place())) {
        // TODO(liuyuhui) support XPU set constant
        VLOG(3) << "XPU doesn't support set_constant";
      }
Z
zn 已提交
820 821 822 823 824
#elif defined(PADDLE_WITH_CNCL)
      if (platform::is_mlu_place(group_tensor.place())) {
        // TODO(liuyuhui) support MLU set constant
        VLOG(3) << "MLU doesn't support set_constant";
      }
825
#else
826 827 828 829 830
      auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
      if (HasGrad(var_index)) {
        auto var_base = vars_[var_index]->GradVarBase();
        auto tensor =
            var_base->MutableVar()->GetMutable<framework::LoDTensor>();
831 832
        group_tensor.ShareDataWith(*tensor).Resize(
            {static_cast<int64_t>(length)});
833 834
      } else {
        group_tensor.Resize({static_cast<int64_t>(length)});
835
        phi::funcs::set_constant(*dev_ctx, &group_tensor, 0.0);
836
      }
837
#endif
838 839 840
    }
  } else {
    // process sparse group
841 842 843 844 845 846 847 848 849 850
    PADDLE_ENFORCE_EQ(
        HasGrad(var_index), true,
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] should have gradient. "
            "Currently, DataParallel does not support sparse "
            "parameters without generating gradients during training. "
            "For example, if is_sparese=True is used in Embedding, "
            "the current step of this parameter cannot generate gradient "
            "because of stop_gradient/detatch, where error will occur.",
            var_index, vars_[var_index]->Name()));
851 852 853
    auto var_base = vars_[var_index]->GradVarBase();
    // need to check tensor type
    PADDLE_ENFORCE_EQ(
854
        var_base->Var().IsType<phi::SelectedRows>(), true,
855 856 857 858 859 860 861 862 863 864 865 866
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] must have a selectedrows gradient. "
            "Before forward pass, the parameter type is inferred to be "
            "SelectedRows, but after backward pass, its actual type becomes "
            "LodTensor. It is currently not supported by DataParallel. "
            "For example, if sparse embedding is used, and the weight of "
            "embedding is shared with subsequent dense parameters, then "
            "the parameter gradient of the embedding will be converted "
            "to dense parameters.",
            var_index, vars_[var_index]->Name()));

    group.sparse_contents_ = var_base->MutableVar();
867
  }
868

869 870 871 872 873 874 875 876 877 878
  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
}

879
// TODO(liuyuhui): If BKCL support non-blocking communication, it should be
880
// fixed as same as multi gpus card training.
881
void Reducer::MarkGroupReady(size_t group_index) {
882 883 884 885 886 887 888 889
  PADDLE_ENFORCE_GE(
      group_index, next_group_,
      platform::errors::PreconditionNotMet(
          "The index of the incoming group must be greater "
          "than or equal to the previously synchronized group index, "
          "expect it to greater than or equal to %d, but got %d.",
          next_group_, group_index));

890
  if (group_index > next_group_) {
891
    VLOG(3) << "It will adjust the order of group in next batch automatically";
892 893 894 895 896
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
897 898
    UNUSED auto &group = groups_[next_group_];
    UNUSED const int run_order = next_group_ % nrings_;
899 900 901 902 903 904 905

    // For CUDA or XPU, compute_stream --> comm_stream.
    // For CPU, do nothing.
    // NOTE. Because concat uses the comm_stream,
    // so we expose WaitCompute() interface and call
    // it here.
    parallel_ctx_->WaitCompute(run_order);
906 907 908 909 910 911 912 913
#ifdef PADDLE_WITH_XPU_BKCL
    {
      std::lock_guard<std::mutex> lock(mutex_);
      comm_op_count_ += 1;  // lock
    }
    // TODO(liuyuhui): Add try catch to deal with exception later,
    // otherwise the main thread will continue to run when an exception is
    // thrown in comm_pool_.
914 915
    auto next_group = next_group_;
    comm_pool_->enqueue([this, run_order, next_group, &group] {
916
      auto dev_id = place_.device;
917
      platform::SetXPUDeviceId(dev_id);
918
      FusedAllReduceSchedule(run_order, group, next_group);
919 920 921 922
      {
        std::lock_guard<std::mutex> lock(mutex_);
        comm_op_count_ -= 1;  // lock
        cv_.notify_all();
923
      }
924
    });
Z
zn 已提交
925 926 927
#elif defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL) ||    \
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_ASCEND_CL) || \
    defined(PADDLE_WITH_CNCL)
928
    FusedAllReduceSchedule(run_order, group, next_group_);
929 930
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
Z
zn 已提交
931
        "Not compiled with BKCL or NCCL or CNCL or GLOO."));
932 933 934 935
#endif
  }
}

936 937 938 939 940
void Reducer::FusedAllReduceSchedule(const int run_order, Group &group,
                                     const int curr_group_index) {
  // The overall timeline: concat > div_nranks > allreduce > split
  // dev_context is used to select different stream
  const auto &dev_context = *parallel_ctx_->GetDeviceContext(run_order);
941
  if (group.is_sparse_) {
942 943 944 945 946
    VLOG(3) << "sparse group [" << curr_group_index
            << "] start allreduce in ring[" << run_order << "]";
    group.DivNRanks(dev_context, nranks_);
    parallel_ctx_->AllReduceByStream(*group.sparse_contents_,
                                     group.sparse_contents_, run_order, false);
947
  } else {
948 949
    VLOG(3) << "dense group [" << curr_group_index
            << "] start allreduce in ring[" << run_order << "]";
950 951
    // Select common commstream to concat tensors
    // group.dense_tensors ---> group.dense_contents_
952
    group.ConcatTensors(dev_context);
953

954
// NOTE(liuyuhui): ConcatTensors use communication stream, but BKCL only support
955 956
// default stream for communicating, so there exist some problems in
// synchronization. And need to add a WaitComm there.
957
// TODO(liuyuhui): If BKCL support non-blocking communication, it should be
958
// fixed as multi gpus card training.
959
#ifdef PADDLE_WITH_XPU_BKCL
960 961 962
    if (platform::is_xpu_place(group.dense_tensors_[0].place())) {
      parallel_ctx_->WaitComm(run_order);
    }
963 964
#endif

965
    group.DivNRanks(dev_context, nranks_);
966 967 968
    // Start allreduce
    parallel_ctx_->AllReduceByStream(
        group.dense_contents_, &(group.dense_contents_), run_order, false);
969

970
    // Select communication stream to split tensors
971
    // group.dense_contents_ ---> group.dense_tensors
972
    group.SplitTensors(dev_context);
973 974 975
  }
}

976
std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
977 978 979 980 981 982 983 984 985
  VLOG(3) << "The order of parameter arrival: "
          << string::join_strings(rebuild_var_indices_, ',');

  PADDLE_ENFORCE_EQ(
      rebuild_vars_.size(), vars_.size(),
      platform::errors::PreconditionNotMet(
          "Rebuild vars's number should be equal to original vars'number, "
          "expect it to be %d, but got %d.",
          vars_.size(), rebuild_vars_.size()));
986 987 988 989 990 991 992 993 994 995 996 997
  std::reverse(rebuild_vars_.begin(), rebuild_vars_.end());
  std::reverse(rebuild_var_indices_.begin(), rebuild_var_indices_.end());
  auto rebuild_group_indices =
      AssignGroupBySize(rebuild_vars_, is_sparse_gradient_, group_size_limits_,
                        rebuild_var_indices_);
  has_rebuilt_group_ = true;
  rebuild_vars_.clear();
  rebuild_var_indices_.clear();
  std::reverse(rebuild_group_indices.begin(), rebuild_group_indices.end());
  return rebuild_group_indices;
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
void Reducer::ProcessUnusedDenseVars() {
  // The calculation stream must be used here to
  // avoid conflicts with communication.
  VLOG(3) << "Local used vars : "
          << string::join_strings(local_used_vars_, ',');
  const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
  // H2D is to allreduce the local_used_vars_
  auto *global_used_tensor =
      global_used_vars_.GetMutable<framework::LoDTensor>();
  framework::TensorFromVector<int>(local_used_vars_, *dev_ctx,
                                   global_used_tensor);
  parallel_ctx_->AllReduceByStream(global_used_vars_, &global_used_vars_, 0,
                                   true);
  framework::TensorToVector<int>(*global_used_tensor, *dev_ctx,
                                 &local_used_vars_);

  // sync compute stream to get global used var message,
  // but maybe affect speed performance
  parallel_ctx_->SynchronizeCompute();
  VLOG(3) << "Global used vars : "
          << string::join_strings(local_used_vars_, ',');

  for (const auto var_index : unused_vars_) {
    const bool global_unused = (local_used_vars_[var_index] == 0);

    // global used but local unused, set grad
    VLOG(3) << "Var [" << var_index << "] [" << vars_[var_index]->Name()
            << "] global_unused:" << global_unused
            << "  has grad: " << HasGrad(var_index);

    if (!global_unused) {
      VLOG(3) << "Start process unused Var";
      // 1. source var base
      const auto &var_locator = variable_locators_[var_index];
      const auto group_index = var_locator.group_index;
      const auto &group = groups_[group_index];
      const auto inside_group_index = var_locator.inside_group_index;
      const auto &src_tensor = group.dense_tensors_[inside_group_index];
      // sparse no need to check and no support find_unused_parameters
      if (group.is_sparse_) {
        continue;
      }
      // 2. destination var base
      auto dest_var_base = vars_[var_index];
      auto *dest_tensor =
          dest_var_base->MutableVar()->GetMutable<framework::LoDTensor>();
      const auto &dest_dims = dest_tensor->dims();

      // 3. create grad var base or get grad var base
      auto grad_var_base_tmp = dest_var_base->MutableGradVarBase();
1048 1049 1050 1051
      // NOTE(haohongxiang): Calling SetIsEmpty here is to make sure that
      // gradient accumulation can continue normally after clear_gradients()
      // especiall in cases including complex control flow.
      grad_var_base_tmp->SharedVar()->SetIsEmpty(false);
1052 1053 1054 1055 1056

      // 4. set grad tensor
      auto *dest_grad_tensor =
          grad_var_base_tmp->MutableVar()->GetMutable<framework::LoDTensor>();
      const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
1057 1058
      paddle::framework::TensorCopy(src_tensor, place_, *dev_ctx,
                                    dest_grad_tensor);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
      dest_grad_tensor->Resize(dest_dims);
    }
  }
}

bool Reducer::HasGrad(size_t var_index) {
  const auto grad_var = vars_[var_index]->GradVarBase();
  if (!grad_var || !grad_var->Var().IsInitialized()) {
    return false;
  }

  const auto &var = grad_var->Var();
  if (var.IsType<framework::LoDTensor>()) {
    if (var.Get<framework::LoDTensor>().IsInitialized()) {
      return true;
    }
1075 1076
  } else if (var.IsType<phi::SelectedRows>()) {
    if (var.Get<phi::SelectedRows>().value().IsInitialized()) {
1077 1078 1079 1080 1081 1082 1083 1084 1085
      return true;
    }
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Only support LoDTensor and SelectedRows for gradient var"));
  }
  return false;
}

1086
void Reducer::FinalizeBackward() {
1087
  groups_need_finalize_ = false;
1088
  grad_need_hooks_ = false;
1089 1090 1091 1092 1093 1094
#ifdef PADDLE_WITH_XPU_BKCL
  {
    std::unique_lock<std::mutex> lock(mutex_);
    cv_.wait(lock, [&] { return comm_op_count_ == 0; });
  }
#endif
1095

1096 1097
  // Must prevent compute_stream_ starting until all comm streams have finished
  for (int i = 0; i < nrings_; ++i) {
1098
    parallel_ctx_->WaitComm(i);
1099 1100
  }

1101
  if (NeedRebuildGroup()) {
1102 1103 1104 1105 1106
    VLOG(3) << "Start rebuilding the groups";
    auto rebuild_group_indices = RebuildGruops();
    group_indices_ = std::move(rebuild_group_indices);
    InitializeGroups(group_indices_);
  }
1107

1108
  if (find_unused_vars_each_step_) {
1109
// TODO(liuyuhui) support xpu about Tensorcopy/TensorFromVector/TensorToVector
1110 1111 1112
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||      \
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_ASCEND_CL) || \
    defined(PADDLE_WITH_CNCL)
1113 1114 1115 1116 1117 1118 1119 1120 1121
    ProcessUnusedDenseVars();
#endif
    // Initialize local used vars
    local_used_vars_.clear();
    local_used_vars_.resize(vars_.size(), 0);
    VLOG(3) << "ProcessUnusedDenseVars is finished.";
  }

  VLOG(3) << "In the batch, Reducer is finished.";
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
}

// According to the size of each parameter, it is allocated to different groups.
// The sparse parameter occupies a group exclusively. The dense parameters of
// the same data type are assigned to the same group. When dividing groups, the
// size of each group will be limited according to each value in
// group_size_limits in turn. When it is not enough, it will be divided
// by the last value of group_size_limits. The limit value is 0, which
// means that the parameter will monopolize the group.
std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
    const std::vector<bool> &is_sparse_gradient,
1134 1135
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
1136 1137 1138 1139 1140
  PADDLE_ENFORCE_EQ(vars.size(), is_sparse_gradient.size(),
                    platform::errors::PreconditionNotMet(
                        "vars len must be equal to is_sparse_gradient len, but "
                        "[%lu] != [%lu]",
                        vars.size(), is_sparse_gradient.size()));
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };
  PADDLE_ENFORCE_EQ(true, check_perm(tensor_indices),
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::unordered_map<std::string, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::unordered_map<std::string, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < vars.size(); ++i) {
    const auto &var = vars[i];
1170 1171 1172 1173 1174 1175 1176

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
1177
      // we keep sparse var a single group
1178
      res.push_back({tensor_real_index});
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
      continue;
    }

    const auto &var_dtype = var->DataType();
    const auto var_dtype_str = framework::DataTypeToString(var_dtype);
    VLOG(3) << "var[" << var->GradVarName() << "] 's type is "
            << var->DataType();
    auto &group_info = next_group[var_dtype_str];
    int64_t var_size = -1;
    if (var->Var().IsType<framework::LoDTensor>()) {
      var_size = var->Var().Get<framework::LoDTensor>().numel();
    } else {
      VLOG(3) << "var " << var->Name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }
1195
    group_info.first.push_back(tensor_real_index);
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype_str) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype_str] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype_str];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
        group_index.empty(), true,
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
1226 1227 1228 1229 1230 1231
  if (tensor_indices.empty()) {
    std::sort(res.begin(), res.end(),
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
1232 1233 1234 1235 1236 1237
  return res;
}
#endif

}  // namespace imperative
}  // namespace paddle