multi_devices_graph_pass.cc 34.4 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
S
sneaxiy 已提交
16
#include <map>
C
chengduoZH 已提交
17
#include <string>
C
chengduoZH 已提交
18
#include <utility>
C
chengduoZH 已提交
19 20
#include <vector>

21
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
22
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
23
#include "paddle/fluid/framework/details/computation_op_handle.h"
24
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
X
Xin Pan 已提交
25
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
26
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
27
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
29
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
30
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
31
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34 35 36
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
namespace {
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
    var = var_holder.rbegin()->get();
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
123

X
Xin Pan 已提交
124 125 126 127 128 129
static const char kLossVarName[] = "loss_var_name";
static const char kPlaces[] = "places";
static const char kParams[] = "params";
static const char kLocalScopes[] = "local_scopes";
static const char kStrategy[] = "strategy";

X
Xin Pan 已提交
130
void MultiDevSSAGraphBuilder::Init() const {
X
clean  
Xin Pan 已提交
131 132 133
  all_vars_.clear();
  balance_vars_.clear();

X
Xin Pan 已提交
134 135 136 137
  loss_var_name_ = Get<const std::string>(kLossVarName);
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
Y
Yu Yang 已提交
138
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
139
  nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
Y
Yu Yang 已提交
140
#endif
X
Xin Pan 已提交
141

X
Xin Pan 已提交
142
  for (auto &p : Get<const std::unordered_set<std::string>>(kParams)) {
Y
Yu Yang 已提交
143 144
    grad_names_.insert(GradVarName(p));
  }
Y
Yancey1989 已提交
145
  balance_vars_.resize(places_.size(), 0);
Y
yuyang18 已提交
146 147 148 149 150
  if (strategy_.enable_data_balance_ && places_.size() == 1) {
    LOG(WARNING) << "It is no need to enable data balance when there is only "
                    "one place. enable_data_balance is set to False.";
    strategy_.enable_data_balance_ = false;
  }
Y
Yu Yang 已提交
151 152
}

X
Xin Pan 已提交
153 154
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(ir::Graph *result,
                                                ir::Node *node,
Y
Yu Yang 已提交
155 156
                                                size_t place_id) const {
  auto p = places_[place_id];
X
Xin Pan 已提交
157
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
X
Xin Pan 已提交
158 159
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
160

161 162
  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
T
wip  
typhoonzero 已提交
163 164 165
    op_handle->AddInput(var);
  }

166
  for (ir::Node *output : node->outputs) {
X
polish  
Xin Pan 已提交
167 168 169 170 171 172 173 174
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
T
wip  
typhoonzero 已提交
175 176
  }
}
Y
fix pe  
Yancey1989 已提交
177 178

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
X
Xin Pan 已提交
179
    const std::vector<ir::Node *> &nodes) const {
Y
fix pe  
Yancey1989 已提交
180
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
181 182
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
183 184
  for (auto &node : nodes) {
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
185 186
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
187
    if (op->Type() == "send") {
Y
fix pe  
Yancey1989 已提交
188 189 190 191 192 193 194 195 196 197
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
X
Xin Pan 已提交
198
    const std::vector<ir::Node *> &nodes) const {
Y
fix pe  
Yancey1989 已提交
199
  std::vector<std::string> recv_vars;
200 201
  for (auto &node : nodes) {
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
202 203 204
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
205 206 207 208 209 210 211 212 213
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

Y
Yancey1989 已提交
214 215 216 217
size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
X
Xin Pan 已提交
218
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
Y
Yancey1989 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

X
better  
Xin Pan 已提交
235 236 237 238 239
// Topology sort the graph nodes from inputs to outputs.
// Since SSAGraphBuilder depends on forward/backward nodes to assign devices
// to parameter/gradients before optimizer ops, topo sort is insufficient. (
// some optimizer ops might not depend on any nodes), we manually move all
// optimizer nodes after last backward nodes.
X
Xin Pan 已提交
240
// However, the assumption by SSAGraphBuilder should be relaxed in the future.
S
sneaxiy 已提交
241
std::vector<ir::Node *> SortOpsAndDelayOptimizeOp(
S
sneaxiy 已提交
242
    const ir::Graph &graph, bool enable_sequential_execution = false) {
S
sneaxiy 已提交
243
  std::vector<ir::Node *> ret;
S
sneaxiy 已提交
244
  if (enable_sequential_execution) {
S
sneaxiy 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258
    VLOG(10) << "sequential execution mode is enabled";
    for (auto *node : graph.Nodes()) {
      if (node->IsOp()) {
        ret.push_back(node);
      }
    }
    std::sort(ret.begin(), ret.end(),
              [](const ir::Node *n1, const ir::Node *n2) {
                return n1->id() < n2->id();
              });
  } else {
    ret = ir::TopologySortOperations(graph);
  }

X
better  
Xin Pan 已提交
259 260 261 262 263
  size_t last_backward = 0;
  for (size_t i = 0; i < ret.size(); ++i) {
    if (boost::get<int>(
            ret[i]->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kBackward)) {
X
Xin Pan 已提交
264
      last_backward = i;
X
better  
Xin Pan 已提交
265 266 267
    }
  }

X
Xin Pan 已提交
268 269 270 271
  std::vector<ir::Node *> optimize_ops;
  std::vector<ir::Node *> sorted_ret;
  for (size_t i = 0; i < ret.size(); ++i) {
    if (i < last_backward) {
X
Xin Pan 已提交
272 273 274
      if (static_cast<bool>(boost::get<int>(ret[i]->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kOptimize))) {
X
Xin Pan 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
        optimize_ops.push_back(ret[i]);
      } else {
        sorted_ret.push_back(ret[i]);
      }
    } else if (i == last_backward) {
      sorted_ret.push_back(ret[i]);
      // Verify that no operations before optimize ops depends on optimize ops.
      std::unordered_set<ir::Node *> optimize_set(optimize_ops.begin(),
                                                  optimize_ops.end());
      for (ir::Node *n : sorted_ret) {
        for (ir::Node *in : n->inputs) {
          for (ir::Node *pre_n : in->inputs) {
            PADDLE_ENFORCE(optimize_set.find(pre_n) == optimize_set.end(),
                           "optimize operations cannot be depended by forward "
                           "or backward node %s -> %s",
                           pre_n->Name(), n->Name());
          }
        }
X
Xin Pan 已提交
293
      }
X
Xin Pan 已提交
294 295 296 297
      sorted_ret.insert(sorted_ret.end(), optimize_ops.begin(),
                        optimize_ops.end());
    } else {
      sorted_ret.push_back(ret[i]);
X
Xin Pan 已提交
298 299
    }
  }
X
better  
Xin Pan 已提交
300 301 302
  return sorted_ret;
}

X
Xin Pan 已提交
303
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
X
Xin Pan 已提交
304
    std::unique_ptr<ir::Graph> graph) const {
X
Xin Pan 已提交
305
  Init();
X
Xin Pan 已提交
306
  // Give the topology sort order and rebuild the graph structure.
S
sneaxiy 已提交
307 308
  bool enable_sequential_execution = Has("enable_sequential_execution") &&
                                     Get<bool>("enable_sequential_execution");
S
sneaxiy 已提交
309
  std::vector<ir::Node *> sorted_ops =
S
sneaxiy 已提交
310
      SortOpsAndDelayOptimizeOp(*graph, enable_sequential_execution);
X
Xin Pan 已提交
311 312
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
313 314

  for (auto &node : nodes) {
X
Xin Pan 已提交
315
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
316
      all_vars_.emplace(node->Name(), node->Var());
317
    }
C
fix ci  
chengduoZH 已提交
318
  }
C
chengduoZH 已提交
319
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
320 321

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
322 323 324 325
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
  result.Set(kShardedVarDevice, new ShardedVarDevice);
326

Y
fix pe  
Yancey1989 已提交
327
  // find send/recv vars so that we can place the distributed training
328
  // related op in the place 0
X
Xin Pan 已提交
329 330
  auto send_vars = FindDistTrainSendVars(sorted_ops);
  auto recv_vars = FindDistTrainRecvVars(sorted_ops);
T
typhoonzero 已提交
331

C
chengduoZH 已提交
332 333 334
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
335
  size_t cur_device_id = 0;
Y
Yu Yang 已提交
336
  bool is_forwarding = true;
Y
Yancey1989 已提交
337
  bool is_dist_train = false;
338

X
better  
Xin Pan 已提交
339
  for (ir::Node *node : sorted_ops) {
Y
Yancey1989 已提交
340
    if (boost::get<int>(
341
            node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Yancey1989 已提交
342
        static_cast<int>(OpRole::kRPC)) {
Y
Yancey1989 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355
      int op_dev_id = CreateRPCOp(&result, node);
      PADDLE_ENFORCE(op_dev_id != -1,
                     "Can not schedule the RPC operator to the right place.");
      if (node->Op()->Type() == "recv") {
        auto recv_vars_attr =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
        PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
        if (recv_vars_attr[0].find(".block") == std::string::npos) {
          bcast_var_name_set[op_dev_id].emplace(recv_vars_attr[0]);
        }
      }
      is_dist_train = true;
356 357 358
    } else if (boost::get<int>(node->Op()->GetAttr(
                   OpProtoAndCheckerMaker::OpRoleAttrName())) ==
               static_cast<int>(OpRole::kDist)) {
Y
Yancey1989 已提交
359 360 361 362 363
      int op_dev_id = CreateDistTrainOp(&result, node);
      if (node->Op()->Type() == "concat") {
        auto origin_param_name = node->Op()->OutputArgumentNames()[0];
        bcast_var_name_set[op_dev_id].emplace(origin_param_name);
      }
X
Xin Pan 已提交
364
    } else if (IsScaleLossOp(node)) {
Y
Yu Yang 已提交
365
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
366 367
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
X
Xin Pan 已提交
368
        // TODO(paddle-dev): Why is there no input for this op_handle?
369 370
        auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
        CreateScaleLossGradOp(&result, loss_grad_name);
Y
Yu Yang 已提交
371
      }
372 373 374 375
      // This assumes the backward generating code will ensure IsScaleLossOp
      // is true only for the op that scale the final scalar loss.
      // It also assumes backward op will always follow the forward op in
      // the block.
Y
Yu Yang 已提交
376
      is_forwarding = false;
Y
Yu Yang 已提交
377
    } else {
X
Xin Pan 已提交
378
      int op_dev_id = GetOpDeviceID(result, node);
C
chengduo 已提交
379
      if (op_dev_id != -1) {  // This op only runs on one specific device.
X
Xin Pan 已提交
380
        CreateComputationalOp(&result, node, op_dev_id);
381
        for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
382
          graph->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
383
              .emplace(n->Name(), op_dev_id);
C
chengduoZH 已提交
384
        }
C
chengduo 已提交
385 386 387
      } else {
        // This op runs on all devices, and its output may have parameter's
        // gradients.
X
Xin Pan 已提交
388
        // TODO(paddle-dev): Why is so special about "read" op?
389 390
        if (node->Op()->Type() == "read" && strategy_.enable_data_balance_) {
          node->Op()->SetAttr("throw_eof_exp", false);
X
Xin Pan 已提交
391
          CreateComputationalOps(&result, node, places_.size());
392
          const auto &data_var_names = node->Op()->Output("Out");
393
          InsertDataBalanceOp(&result, data_var_names);
F
fengjiayi 已提交
394
        } else {
X
Xin Pan 已提交
395
          CreateComputationalOps(&result, node, places_.size());
396 397
        }

C
chengduo 已提交
398 399 400
        if (!is_forwarding && places_.size() > 1) {
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
401
          if (static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
C
chengduo 已提交
402 403 404
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward))) {
            try {
405 406
              auto backward_vars = boost::get<std::vector<std::string>>(
                  node->Op()->GetNullableAttr(
C
chengduo 已提交
407
                      OpProtoAndCheckerMaker::OpRoleVarAttrName()));
Y
yuyang18 已提交
408

C
chengduo 已提交
409
              PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
Y
yuyang18 已提交
410

C
chengduo 已提交
411 412 413 414
              for (size_t i = 0; i < backward_vars.size(); i += 2) {
                auto &p_name = backward_vars[i];
                auto &g_name = backward_vars[i + 1];
                VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
Y
yuyang18 已提交
415

C
chengduo 已提交
416 417 418 419
                switch (strategy_.reduce_) {
                  case BuildStrategy::ReduceStrategy::kReduce:
                    cur_device_id = GetAppropriateDeviceID({g_name});
                    CreateReduceOp(&result, g_name, cur_device_id);
X
Xin Pan 已提交
420
                    graph->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
421
                        .emplace(g_name, cur_device_id);
Y
Yancey1989 已提交
422 423 424
                    if (!is_dist_train) {
                      bcast_var_name_set[cur_device_id].emplace(p_name);
                    }
C
chengduo 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437
                    break;
                  case BuildStrategy::ReduceStrategy::kAllReduce:
                    if (IsSparseGradient(g_name)) {
                      CreateReduceOp(&result, g_name, 0);
                      CreateBroadcastOp(&result, g_name, 0);
                    } else {
                      InsertAllReduceOp(&result, g_name);
                    }
                    break;
                  default:
                    LOG(FATAL) << "Unknown reduce strategy ";
                    break;
                }
Y
yuyang18 已提交
438
              }
C
chengduo 已提交
439
            } catch (boost::bad_get e) {
C
chengduoZH 已提交
440
            }
Y
Yu Yang 已提交
441 442 443 444 445
          }
        }
      }
    }
  }
446 447 448 449 450
  bool use_gpu = false;
#ifdef PADDLE_WITH_CUDA
  use_gpu = nccl_ctxs_ != nullptr;
#endif

Y
Yancey1989 已提交
451 452 453 454 455
  // Insert broadcast operators principle:
  // 1. Broadcast optimized parameters in Reduce strategy;
  // 2. No need broadcast optimized parameters in AllReduce strategy because of
  //    the optimization sub-graph would be run on every GPU;
  // 3. Allways broadcast received parameters in Distribute Training.
Y
Yancey1989 已提交
456 457 458
  if ((use_gpu &&
       strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) ||
      is_dist_train) {
459 460 461 462 463
    for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
      auto &to_bcast_set = bcast_var_name_set[dev_id];
      for (auto &bcast_name : to_bcast_set) {
        CreateBroadcastOp(&result, bcast_name, dev_id);
      }
C
chengduoZH 已提交
464 465
    }
  }
S
sneaxiy 已提交
466 467

  // Insert dependencies between computation_ops
S
sneaxiy 已提交
468
  if (enable_sequential_execution) {
S
sneaxiy 已提交
469 470 471
    InsertSequenceDependenciesBetweenComputationOps(graph.get());
  }

Y
Yu Yang 已提交
472
  /*
X
Xin Pan 已提交
473 474 475
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
 */
Y
Yu Yang 已提交
476
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
477

Y
Yu Yang 已提交
478 479 480 481
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
X
Xin Pan 已提交
482
  PADDLE_ENFORCE(!ir::HasCircle(result));
Q
qiaolongfei 已提交
483
  return graph;
Y
Yu Yang 已提交
484 485
}

S
sneaxiy 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
void MultiDevSSAGraphBuilder::InsertSequenceDependenciesBetweenComputationOps(
    ir::Graph *graph) const {
  auto &ops = graph->Get<GraphOps>(kGraphOps);
  // Use std::map instead of std::unordered_map for better log message
  std::map<size_t, std::vector<ComputationOpHandle *>> compute_ops;
  for (auto &op : ops) {
    auto *compute_op = dynamic_cast<ComputationOpHandle *>(op.get());
    if (compute_op == nullptr) continue;
    compute_ops[compute_op->GetPlaceId()].push_back(compute_op);
  }

  for (auto &pair : compute_ops) {
    auto &ops = pair.second;
    for (size_t i = 1; i < ops.size(); ++i) {
      if (ops[i - 1]->Outputs().empty()) {
        auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
        graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        ops[i - 1]->AddOutput(dep_var);
      }
      ops[i]->AddInput(ops[i - 1]->Outputs().front());
      VLOG(10) << "sequential execution mode: device(" << pair.first
               << ") insert dependency between "
               << ops[i - 1]->GetOp().DebugString() << " -> "
               << ops[i]->GetOp().DebugString();
    }
  }
}

Y
Yancey1989 已提交
514 515 516
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
517 518 519
    return true;
  }
  return false;
520 521
}

522 523 524 525 526 527 528 529 530 531 532 533 534
void MultiDevSSAGraphBuilder::SetCommunicationContext(
    OpHandleBase *op_handle, const platform::Place &p) const {
#ifdef PADDLE_WITH_CUDA
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

X
Xin Pan 已提交
535
void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
C
chengduoZH 已提交
536
                                                const std::string &p_name,
C
chengduoZH 已提交
537
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
538
#ifdef PADDLE_WITH_CUDA
X
polish  
Xin Pan 已提交
539 540 541
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
542
#else
X
polish  
Xin Pan 已提交
543 544 545
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
546
#endif
X
Xin Pan 已提交
547
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
548

X
Xin Pan 已提交
549
  auto *in =
X
Xin Pan 已提交
550
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
551 552 553 554
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
555
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
556
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
557 558 559
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
560 561 562 563 564
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

X
Xin Pan 已提交
565
void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result,
566
                                                    ir::Node *node,
C
chengduoZH 已提交
567
                                                    int dev_id) const {
X
Xin Pan 已提交
568
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
569
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
S
sneaxiy 已提交
570
                              local_scopes_[dev_id], places_[dev_id], dev_id));
571
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
572 573
}

X
Xin Pan 已提交
574
void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
C
chengduoZH 已提交
575
                                                const std::string &og) const {
Y
Yu Yang 已提交
576
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
577
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
578 579
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
580
#else
X
Xin Pan 已提交
581
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
582 583
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
584
#endif
X
Xin Pan 已提交
585
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
Y
Yu Yang 已提交
586 587 588

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
589
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
590
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
591 592
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
593 594
    op_handle->AddInput(prev_grad.get());

X
Xin Pan 已提交
595
    auto var =
X
polish  
Xin Pan 已提交
596 597
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                      vars.size(), i, og, p);
Y
Yu Yang 已提交
598 599 600 601 602
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

603
void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
X
Xin Pan 已提交
604
    ir::Graph *result, const std::vector<std::string> &datas) const {
F
fengjiayi 已提交
605
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
606
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
607 608
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
F
fengjiayi 已提交
609
#else
X
Xin Pan 已提交
610
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
611 612
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_));
F
fengjiayi 已提交
613
#endif
X
Xin Pan 已提交
614
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
615 616 617 618
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
    for (const std::string &d_name : datas) {
X
Xin Pan 已提交
619
      auto &vars = result->Get<GraphVars>(kGraphVars)[i][d_name];
620 621
      PADDLE_ENFORCE(!vars.empty());
      op_handle->AddInput(vars.back().get());
X
polish  
Xin Pan 已提交
622 623 624
      auto var = new VarHandle(
          result->CreateEmptyNode(d_name, ir::Node::Type::kVariable),
          vars.size(), i, d_name, p);
625 626 627 628 629 630
      vars.emplace_back(var);
      op_handle->AddOutput(var);
    }
  }
}

X
Xin Pan 已提交
631 632
int MultiDevSSAGraphBuilder::GetOpDeviceID(const ir::Graph &graph,
                                           ir::Node *node) const {
Y
yuyang18 已提交
633
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
634 635
    return -1;
  }
636
  int op_role = boost::get<int>(
637
      node->Op()->GetAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName()));
638 639
  if (op_role != static_cast<int>(framework::OpRole::kOptimize)) {
    return -1;
C
chengduoZH 已提交
640
  }
641
  auto param_grad = boost::get<std::vector<std::string>>(
X
Xin Pan 已提交
642
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
643 644

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
X
Xin Pan 已提交
645
  int dev_id = GetVarDeviceID(graph, param_grad[1]);
X
Xin Pan 已提交
646 647
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
648
  return dev_id;
649 650
}

X
Xin Pan 已提交
651 652
int MultiDevSSAGraphBuilder::GetVarDeviceID(const ir::Graph &graph,
                                            const std::string &varname) const {
X
Xin Pan 已提交
653
  auto &sharded_var_device = graph.Get<ShardedVarDevice>(kShardedVarDevice);
X
Xin Pan 已提交
654 655
  auto got = sharded_var_device.find(varname);
  return got == sharded_var_device.end() ? -1 : got->second;
C
chengduoZH 已提交
656 657
}

658 659
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(
    ir::Graph *result, const std::string &loss_grad_name) const {
Y
Yu Yang 已提交
660
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
661 662
    // Insert ScaleCost OpHandle
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
663
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
664
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
Y
yuyang18 已提交
665
        local_scopes_.size(), local_scopes_[i], places_[i], dev_ctx);
X
Xin Pan 已提交
666
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
667 668 669 670 671 672 673

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

674 675 676 677
    CreateOpOutput(
        result, op_handle,
        result->CreateEmptyNode(loss_grad_name, ir::Node::Type::kVariable),
        places_[i], i);
Y
Yu Yang 已提交
678 679 680
  }
}

X
Xin Pan 已提交
681
void MultiDevSSAGraphBuilder::CreateComputationalOps(ir::Graph *result,
682
                                                     ir::Node *node,
T
typhoonzero 已提交
683 684
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
685 686
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
S
sneaxiy 已提交
687 688
    result->Get<GraphOps>(kGraphOps).emplace_back(new ComputationOpHandle(
        result->CreateOpNode(node->Op()), s, p, scope_idx));
689
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
690 691 692
  }
}

X
Xin Pan 已提交
693
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
C
chengduoZH 已提交
694 695
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
696
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
697
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
698 699
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
700
#else
X
Xin Pan 已提交
701
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
702 703
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
704
#endif
X
Xin Pan 已提交
705
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
C
chengduoZH 已提交
706 707 708

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
709
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
710
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
711 712 713 714
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
X
Xin Pan 已提交
715
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
716 717 718
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
719 720 721 722 723
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
Yancey1989 已提交
724 725
int MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
                                               ir::Node *node) const {
Y
Yancey1989 已提交
726
  int op_dev_id = -1;
727 728 729
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
X
Xin Pan 已提交
730
    input_var_names.push_back(input->Name());
731 732
  }
  for (ir::Node *output : node->outputs) {
X
Xin Pan 已提交
733
    output_var_names.push_back(output->Name());
734 735 736 737
  }

  if (node->Op()->Type() == "split_byref" ||
      node->Op()->Type() == "split_selected_rows") {
X
Xin Pan 已提交
738
    // TODO(paddle-dev): getting the first var is not safe.
X
Xin Pan 已提交
739
    op_dev_id = GetVarDeviceID(*result, input_var_names[0]);
Y
Yancey1989 已提交
740
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
741 742
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
743
        result->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
744
            .emplace(varname, op_dev_id);
Y
Yancey1989 已提交
745 746
      }
    }
747
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
748
      result->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
749
          .emplace(varname, op_dev_id);
Y
Yancey1989 已提交
750
    }
751
  } else if (node->Op()->Type() == "concat") {
X
Xin Pan 已提交
752
    op_dev_id = GetVarDeviceID(*result, input_var_names[0]);
753
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
754
      result->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
755
          .emplace(varname, op_dev_id);
Y
yi.wu 已提交
756
    }
Y
Yancey1989 已提交
757
  } else {
758
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
W
Wu Yi 已提交
759
    PADDLE_THROW(
Y
Yancey1989 已提交
760 761 762 763 764
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
765 766
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());
Y
Yancey1989 已提交
767

768
  CreateComputationalOp(result, node, op_dev_id);
Y
Yancey1989 已提交
769
  return op_dev_id;
W
Wu Yi 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
        var = var_holder.rbegin()->get();
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
784 785 786
  }
}

787
// Create RPC related op handles that connects its in ops and out ops.
Y
Yancey1989 已提交
788 789
int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
                                         ir::Node *node) const {
Y
Yancey1989 已提交
790
  int op_dev_id = -1;
791
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
792
    // TODO(paddle-dev): getting the first var is not safe.
X
Xin Pan 已提交
793
    op_dev_id = GetVarDeviceID(*result, node->inputs[0]->Name());
X
Xin Pan 已提交
794 795
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
796 797 798
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
799
        node->inputs[0]->Name().find(".block") == std::string::npos) {
800 801
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
802
        input_var_names.push_back(n->Name());
803
      }
W
Wu Yi 已提交
804 805 806 807 808 809
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
810
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
811
        result->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
812
            .emplace(varname, op_dev_id);
Y
Yancey1989 已提交
813
      }
W
Wu Yi 已提交
814 815
      result->Get<ShardedVarDevice>(kShardedVarDevice)
          .emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
816
    }
817 818 819
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
820
      output_var_names.push_back(n->Name());
821
    }
W
Wu Yi 已提交
822 823 824 825 826 827 828 829 830 831
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
    if (recv_param_grad.size() == 2U) {
      op_dev_id = GetVarDeviceID(*result, recv_param_grad[1]);
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
832
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
833
      result->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
834
          .emplace(varname, op_dev_id);
Y
Yancey1989 已提交
835 836
    }
  } else {
W
Wu Yi 已提交
837
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
838 839 840 841
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
842
                 node->Op()->Type());
X
Xin Pan 已提交
843
  result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
844 845
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
846

W
Wu Yi 已提交
847 848
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
849
  } else {
W
Wu Yi 已提交
850 851 852 853 854 855
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
856

W
Wu Yi 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
        outvar_dev_id = GetVarDeviceID(*result, output->Name());
        PADDLE_ENFORCE_NE(outvar_dev_id, -1);
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
875
  return op_dev_id;
Y
Yu Yang 已提交
876 877
}

878
bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const {
Y
yuyang18 已提交
879
  return boost::get<int>(
880
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
881 882 883
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
884
}
Y
Yu Yang 已提交
885 886 887
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
888

X
Xin Pan 已提交
889
REGISTER_PASS(multi_devices_pass,
X
Xin Pan 已提交
890 891 892 893 894 895
              paddle::framework::details::MultiDevSSAGraphBuilder)
    .RequirePassAttr(paddle::framework::details::kLossVarName)
    .RequirePassAttr(paddle::framework::details::kPlaces)
    .RequirePassAttr(paddle::framework::details::kParams)
    .RequirePassAttr(paddle::framework::details::kLocalScopes)
    .RequirePassAttr(paddle::framework::details::kStrategy);