backward.cc 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/backward.h"
16

17
namespace phi {
18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
void BilinearTensorProductGradInferMeta(const MetaTensor& x,
                                        const MetaTensor& y,
                                        const MetaTensor& weight,
                                        const MetaTensor& dout,
                                        MetaTensor* dx,
                                        MetaTensor* dy,
                                        MetaTensor* dweight,
                                        MetaTensor* dbias) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  auto weight_dims = weight.dims();
  auto out_dims = dout.dims();

  PADDLE_ENFORCE_EQ(
      out_dims.size(),
      2UL,
      errors::InvalidArgument("The input(Out@GRAD) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      x_dims[0],
      out_dims[0],
      errors::InvalidArgument(
          "The first dimension(batch_size) of input(Out@GRAD) must be "
          "equal to the first dimension of the Input(X)."));
  PADDLE_ENFORCE_EQ(
      weight_dims[0],
      out_dims[1],
      errors::InvalidArgument(
          "The second dimension of input(Out@GRAD) must be equal to "
          "the third dimension of the Input(Weight)."));

  if (dx) {
    dx->set_dims(x_dims);
    dx->set_dtype(x.dtype());
  }
  if (dy) {
    dy->set_dims(y_dims);
    dy->set_dtype(y.dtype());
  }
  if (dweight) {
    dweight->set_dims(weight_dims);
    dweight->set_dtype(weight.dtype());
  }
  if (dbias) {
    dbias->set_dims({1, out_dims[1]});
    dbias->set_dtype(dout.dtype());
  }
}

F
From00 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
void ConvTransposeGradInferMeta(const MetaTensor& x,
                                const MetaTensor& filter,
                                const MetaTensor& dout,
                                const std::vector<int>& strides,
                                const std::vector<int>& paddings,
                                const std::vector<int>& output_padding,
                                const std::vector<int>& output_size,
                                const std::string& padding_algorithm,
                                int groups,
                                const std::vector<int>& dilations,
                                const std::string& data_format,
                                MetaTensor* dx,
                                MetaTensor* dfilter) {
  GeneralBinaryGradInferMeta(x, filter, dx, dfilter);
}

void Conv2dTransposeDoubleGradInferMeta(const MetaTensor& x,
                                        const MetaTensor& filter,
                                        const MetaTensor& dout,
                                        const MetaTensor& ddx,
                                        const MetaTensor& ddfilter,
                                        const std::vector<int>& strides,
                                        const std::vector<int>& paddings,
                                        const std::vector<int>& output_padding,
                                        const std::vector<int>& output_size,
                                        const std::string& padding_algorithm,
                                        int groups,
                                        const std::vector<int>& dilations,
                                        const std::string& data_format,
                                        MetaTensor* dx,
                                        MetaTensor* dfilter,
                                        MetaTensor* ddout) {
  GeneralBinaryGradInferMeta(x, filter, dx, dfilter);

  if (ddout) {
    ddout->share_meta(dout);
  }
}

106 107 108 109 110 111 112 113
void GatherNdGradInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& out_grad,
                           MetaTensor* x_grad) {
  const auto& dtype = out_grad.dtype();
  x_grad->set_dims(x.dims());
  x_grad->share_lod(x);
  x_grad->set_dtype(dtype);
114 115
}

116 117 118 119
void GeneralBinaryGradInferMeta(const MetaTensor& x,
                                const MetaTensor& y,
                                MetaTensor* dx,
                                MetaTensor* dy) {
120 121 122 123 124 125
  if (dx) {
    dx->share_meta(x);
  }
  if (dy) {
    dy->share_meta(y);
  }
126 127
}

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
void GeneralTernaryGradInferMeta(const MetaTensor& x,
                                 const MetaTensor& y,
                                 const MetaTensor& z,
                                 MetaTensor* dx,
                                 MetaTensor* dy,
                                 MetaTensor* dz) {
  if (dx) {
    dx->share_meta(x);
  }
  if (dy) {
    dy->share_meta(y);
  }
  if (dz) {
    dz->share_meta(z);
  }
}

145 146 147 148 149 150
void GeneralUnaryGradInferMeta(const MetaTensor& x, MetaTensor* dx) {
  if (dx) {
    dx->share_meta(x);
  }
}

F
From00 已提交
151 152 153 154 155 156 157 158 159 160
void GumbelSoftmaxGradInferMeta(const MetaTensor& out,
                                const MetaTensor& dout,
                                int axis,
                                MetaTensor* dx) {
  PADDLE_ENFORCE_EQ(
      out.dims(),
      dout.dims(),
      errors::InvalidArgument(
          "Input(Out) and its gradients should have the same shape."));

161
  dx->share_meta(dout);
162 163
}

164 165 166 167 168 169 170
void KernelWithXShapeInferMeta(const MetaTensor& xshape, MetaTensor* dx) {
  auto xshape_dims = xshape.dims();
  auto x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
  dx->set_dims(x_dims);
  dx->share_lod(xshape);
}

F
From00 已提交
171 172 173 174 175 176 177 178 179 180 181 182
void MaxPoolWithIndexGradInferMeta(const MetaTensor& x,
                                   const MetaTensor& mask,
                                   const MetaTensor& dout,
                                   const std::vector<int>& kernel_size,
                                   const std::vector<int>& strides,
                                   const std::vector<int>& paddings,
                                   bool global_pooling,
                                   bool adaptive,
                                   MetaTensor* dx) {
  dx->share_meta(x);
}

Z
zyfncg 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
void NllLossGradInferMeta(const MetaTensor& x,
                          const MetaTensor& label,
                          paddle::optional<const MetaTensor&> weight,
                          const MetaTensor& total_weight,
                          const MetaTensor& out_grad,
                          int64_t ignore_index,
                          const std::string& reduction,
                          MetaTensor* dx,
                          MetaConfig config) {
  const auto& x_dims = x.dims();
  const auto& label_dims = label.dims();
  const auto& dout_dims = out_grad.dims();
  bool contain_unknown_dim =
      phi::contain_unknown_dim(x_dims) || phi::contain_unknown_dim(dout_dims);
  bool check = config.is_runtime || !contain_unknown_dim;

  if (check) {
    auto batch_size = x_dims[0];
    if (x_dims.size() == 2) {
      PADDLE_ENFORCE_EQ(dout_dims.size(),
                        1,
                        phi::errors::InvalidArgument(
                            "The dimensions of Input(Out@Grad) must be 1"));
      if (reduction == "none") {
        PADDLE_ENFORCE_EQ(
            dout_dims[0],
            batch_size,
            phi::errors::InvalidArgument(
                "The unreduced size ofInput(Out@Grad) must be the "
                "same as batch_size."));
      } else {
        PADDLE_ENFORCE_EQ(dout_dims[0],
                          1,
                          phi::errors::InvalidArgument(
                              "The reduced size of Input(Out@Grad) must be 1"));
      }
    } else if (x_dims.size() == 4) {
      if (reduction == "none") {
        PADDLE_ENFORCE_EQ(
            dout_dims.size(),
            3,
            phi::errors::InvalidArgument(
                "The dimensions of Input(Out@Grad) must be 3,But got [%s].",
                dout_dims.size()));
        PADDLE_ENFORCE_EQ(dout_dims[0] == label_dims[0] &&
                              dout_dims[1] == label_dims[1] &&
                              dout_dims[2] == label_dims[2],
                          true,
                          phi::errors::InvalidArgument(
                              "The dimensions of Input(Out@Grad) must be match "
                              "to Input(Label) dimensions."));
      } else {
        PADDLE_ENFORCE_EQ(dout_dims[0],
                          1,
                          phi::errors::InvalidArgument(
                              "The reduced size of Input(Out@Grad) must be 1"));
      }
    }
  }

  if (dx) {
    dx->set_dims(x_dims);
    dx->set_dtype(x.dtype());
  }
}

F
From00 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
void PoolGradInferMeta(const MetaTensor& x,
                       const MetaTensor& out,
                       const MetaTensor& dout,
                       const std::vector<int>& kernel_size,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
                       bool ceil_mode,
                       bool exclusive,
                       const std::string& data_format,
                       const std::string& pooling_type,
                       bool global_pooling,
                       bool adaptive,
                       const std::string& padding_algorithm,
                       MetaTensor* dx) {
  dx->share_meta(x);
}

F
From00 已提交
266 267 268 269 270 271 272 273 274 275 276 277
void PsroiPoolGradInferMeta(const MetaTensor& x,
                            const MetaTensor& rois,
                            paddle::optional<const MetaTensor&> rois_num,
                            const MetaTensor& dout,
                            int pooled_height,
                            int pooled_width,
                            int output_channels,
                            float spatial_scale,
                            MetaTensor* dx) {
  dx->share_meta(x);
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
void ScatterGradInferMeta(const MetaTensor& index,
                          const MetaTensor& updates,
                          const MetaTensor& out_grad,
                          bool overwrite,
                          MetaTensor* x_grad,
                          MetaTensor* updates_grad) {
  const auto& dtype = out_grad.dtype();
  if (updates_grad) {
    updates_grad->set_dims(updates.dims());
    updates_grad->set_dtype(dtype);
  }

  if (x_grad) {
    x_grad->set_dims(out_grad.dims());
    x_grad->set_dtype(dtype);
  }
}

void ScatterNdAddGradInferMeta(const MetaTensor& index,
                               const MetaTensor& updates,
                               const MetaTensor& out_grad,
                               MetaTensor* x_grad,
                               MetaTensor* updates_grad) {
  const auto& dtype = out_grad.dtype();
  if (updates_grad) {
    updates_grad->set_dims(updates.dims());
    updates_grad->set_dtype(dtype);
  }

  if (x_grad) {
    x_grad->set_dims(out_grad.dims());
    x_grad->set_dtype(dtype);
  }
}

313
}  // namespace phi