roi_pool_op.cu 11.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
F
FDInSky 已提交
14
#include <vector>
15
#include "paddle/fluid/memory/memory.h"
Y
Yi Wang 已提交
16
#include "paddle/fluid/operators/roi_pool_op.h"
D
dzhwinter 已提交
17
#include "paddle/fluid/platform/cuda_primitives.h"
W
wanghaox 已提交
18 19 20 21

namespace paddle {
namespace operators {

W
wanghaox 已提交
22
using Tensor = framework::Tensor;
23
using LoDTensor = framework::LoDTensor;
W
wanghaox 已提交
24

W
wanghaox 已提交
25 26
static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;
W
wanghaox 已提交
27

W
wanghaox 已提交
28 29 30
static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
W
wanghaox 已提交
31
}
W
wanghaox 已提交
32

33
template <typename T>
34
__global__ void GPUROIPoolForward(
35
    const int nthreads, const T* input_data, const T* input_rois,
36 37 38
    const float spatial_scale, const int channels, const int height,
    const int width, const int pooled_height, const int pooled_width,
    int* roi_batch_id_data, T* output_data, int64_t* argmax_data) {
39 40 41
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t i = index; i < nthreads; i += offset) {
B
baiyfbupt 已提交
42 43 44 45
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % channels;
    int n = i / pooled_width / pooled_height / channels;
46

47
    const T* offset_input_rois = input_rois + n * kROISize;
48 49 50 51 52
    int roi_batch_ind = roi_batch_id_data[n];
    int roi_start_w = round(offset_input_rois[0] * spatial_scale);
    int roi_start_h = round(offset_input_rois[1] * spatial_scale);
    int roi_end_w = round(offset_input_rois[2] * spatial_scale);
    int roi_end_h = round(offset_input_rois[3] * spatial_scale);
53 54 55 56

    int roi_width = max(roi_end_w - roi_start_w + 1, 1);
    int roi_height = max(roi_end_h - roi_start_h + 1, 1);

B
bug fix  
baiyfbupt 已提交
57 58 59 60 61 62 63 64 65 66 67 68
    int hstart = static_cast<int>(floor(static_cast<double>(ph) *
                                        static_cast<double>(roi_height) /
                                        static_cast<double>(pooled_height)));
    int wstart = static_cast<int>(floor(static_cast<double>(pw) *
                                        static_cast<double>(roi_width) /
                                        static_cast<double>(pooled_width)));
    int hend = static_cast<int>(ceil(static_cast<double>(ph + 1) *
                                     static_cast<double>(roi_height) /
                                     static_cast<double>(pooled_height)));
    int wend = static_cast<int>(ceil(static_cast<double>(pw + 1) *
                                     static_cast<double>(roi_width) /
                                     static_cast<double>(pooled_width)));
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    hstart = min(max(hstart + roi_start_h, 0), height);
    hend = min(max(hend + roi_start_h, 0), height);
    wstart = min(max(wstart + roi_start_w, 0), width);
    wend = min(max(wend + roi_start_w, 0), width);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    T maxval = is_empty ? 0 : -std::numeric_limits<T>::max();
    int maxidx = -1;
    const T* offset_input_data =
        input_data + (roi_batch_ind * channels + c) * height * width;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int input_data_index = h * width + w;
        if (offset_input_data[input_data_index] > maxval) {
          maxval = offset_input_data[input_data_index];
          maxidx = input_data_index;
W
wanghaox 已提交
85
        }
W
wanghaox 已提交
86
      }
87
    }
B
baiyfbupt 已提交
88
    output_data[i] = maxval;
89
    if (argmax_data) {
B
baiyfbupt 已提交
90
      argmax_data[i] = maxidx;
W
wanghaox 已提交
91 92
    }
  }
93
}
W
wanghaox 已提交
94 95

template <typename T>
W
wanghaox 已提交
96
__global__ void GPUROIPoolBackward(
97
    const int nthreads, const T* input_rois, const T* output_grad,
98 99
    const int64_t* argmax_data, const int num_rois, const float spatial_scale,
    const int channels, const int height, const int width,
100 101
    const int pooled_height, const int pooled_width, int* roi_batch_id_data,
    T* input_grad) {
102 103 104
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
B
baiyfbupt 已提交
105 106 107 108
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % channels;
    int n = i / pooled_width / pooled_height / channels;
109

110
    int roi_batch_ind = roi_batch_id_data[n];
111 112 113 114 115 116 117 118 119 120
    int input_offset = (roi_batch_ind * channels + c) * height * width;
    int output_offset = (n * channels + c) * pooled_height * pooled_width;
    const T* offset_output_grad = output_grad + output_offset;
    T* offset_input_grad = input_grad + input_offset;
    const int64_t* offset_argmax_data = argmax_data + output_offset;

    int argmax = offset_argmax_data[ph * pooled_width + pw];
    if (argmax != -1) {
      platform::CudaAtomicAdd(
          offset_input_grad + argmax,
W
wanghaox 已提交
121 122 123
          static_cast<T>(offset_output_grad[ph * pooled_width + pw]));
    }
  }
124
}
W
wanghaox 已提交
125 126

template <typename Place, typename T>
W
wanghaox 已提交
127
class GPUROIPoolOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
128 129 130
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
131
    auto* rois = ctx.Input<LoDTensor>("ROIs");
W
wanghaox 已提交
132 133 134 135 136 137 138 139
    auto* out = ctx.Output<Tensor>("Out");
    auto* argmax = ctx.Output<Tensor>("Argmax");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    auto in_dims = in->dims();
140
    int batch_size = in_dims[0];
W
wanghaox 已提交
141 142 143 144 145
    auto in_stride = framework::stride(in_dims);
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];

146
    int rois_num = rois->dims()[0];
B
baiyfbupt 已提交
147

148
    if (rois_num == 0) return;
W
wanghaox 已提交
149 150

    int output_size = out->numel();
W
wanghaox 已提交
151 152
    int blocks = NumBlocks(output_size);
    int threads = kNumCUDAThreads;
W
wanghaox 已提交
153

154 155
    framework::Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
156 157
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
F
FDInSky 已提交
158
    auto& dev_ctx = ctx.cuda_device_context();
159
    auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
160 161 162
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
      int rois_batch_size = rois_num_t->numel();
F
FDInSky 已提交
163
      PADDLE_ENFORCE_EQ(
164
          rois_batch_size, batch_size,
F
FDInSky 已提交
165
          "The rois_batch_size and imgs batch_size must be the same.");
166 167 168 169 170 171
      std::vector<int> rois_num_list(rois_batch_size);
      memory::Copy(cplace, rois_num_list.data(), gplace,
                   rois_num_t->data<int>(), sizeof(int) * rois_batch_size, 0);
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int i = start; i < start + rois_num_list[n]; ++i) {
F
FDInSky 已提交
172 173
          roi_batch_id_data[i] = n;
        }
174
        start += rois_num_list[n];
F
FDInSky 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188
      }
    } else {
      auto rois_lod = rois->lod().back();
      int rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          "The rois_batch_size and imgs batch_size must be the same.");
      int rois_num_with_lod = rois_lod[rois_batch_size];
      PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
                        "The rois_num from input and lod must be the same.");
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
189 190
      }
    }
191
    int bytes = roi_batch_id_list.numel() * sizeof(int);
192
    auto roi_ptr = memory::Alloc(dev_ctx, bytes);
193 194 195 196 197
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());

    GPUROIPoolForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
198
        output_size, in->data<T>(), rois->data<T>(), spatial_scale, channels,
199 200
        height, width, pooled_height, pooled_width, roi_id_data,
        out->mutable_data<T>(ctx.GetPlace()),
201
        argmax->mutable_data<int64_t>(ctx.GetPlace()));
W
wanghaox 已提交
202 203 204 205
  }
};

template <typename Place, typename T>
W
wanghaox 已提交
206
class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
207 208 209
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
210
    auto* rois = ctx.Input<LoDTensor>("ROIs");
211
    auto* rois_lod = ctx.Input<Tensor>("RoisNum");
W
wanghaox 已提交
212 213
    auto* argmax = ctx.Input<Tensor>("Argmax");

214 215
    auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
W
wanghaox 已提交
216 217 218 219 220

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

221
    int rois_num = rois->dims()[0];
W
wanghaox 已提交
222 223 224 225 226
    int channels = in->dims()[1];
    int height = in->dims()[2];
    int width = in->dims()[3];

    if (x_grad) {
227 228
      framework::Tensor roi_batch_id_list;
      roi_batch_id_list.Resize({rois_num});
229 230 231 232
      auto cplace = platform::CPUPlace();
      int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);

      auto& dev_ctx = ctx.cuda_device_context();
233
      auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
234 235 236 237 238 239 240 241 242
      if (ctx.HasInput("RoisNum")) {
        auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
        int rois_batch_size = rois_num_t->numel();
        std::vector<int> rois_num_list(rois_batch_size);
        memory::Copy(cplace, rois_num_list.data(), gplace,
                     rois_num_t->data<int>(), sizeof(int) * rois_batch_size, 0);
        int start = 0;
        for (int n = 0; n < rois_batch_size; ++n) {
          for (int i = start; i < start + rois_num_list[n]; ++i) {
F
FDInSky 已提交
243 244
            roi_batch_id_data[i] = n;
          }
245
          start += rois_num_list[n];
F
FDInSky 已提交
246 247 248 249 250 251 252 253 254 255
        }
      } else {
        auto rois_lod = rois->lod().back();
        int rois_batch_size = rois_lod.size() - 1;
        for (int n = 0; n < rois_batch_size; ++n) {
          for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
            roi_batch_id_data[i] = n;
          }
        }
      }
256
      int bytes = roi_batch_id_list.numel() * sizeof(int);
257
      auto roi_ptr = memory::Alloc(dev_ctx, bytes);
258 259 260
      int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
      memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                   dev_ctx.stream());
261

W
wanghaox 已提交
262 263
      x_grad->mutable_data<T>(ctx.GetPlace());
      math::SetConstant<Place, T> set_zero;
264
      set_zero(dev_ctx, x_grad, static_cast<T>(0));
W
wanghaox 已提交
265 266

      int output_grad_size = out_grad->numel();
W
wanghaox 已提交
267 268
      int blocks = NumBlocks(output_grad_size);
      int threads = kNumCUDAThreads;
W
wanghaox 已提交
269 270

      if (output_grad_size > 0) {
271
        GPUROIPoolBackward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
272
            output_grad_size, rois->data<T>(), out_grad->data<T>(),
273
            argmax->data<int64_t>(), rois_num, spatial_scale, channels, height,
274
            width, pooled_height, pooled_width, roi_id_data,
275 276
            x_grad->mutable_data<T>(ctx.GetPlace()));
      }
W
wanghaox 已提交
277 278 279 280 281 282 283 284
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Q
QI JUN 已提交
285 286 287 288 289
REGISTER_OP_CUDA_KERNEL(
    roi_pool,
    ops::GPUROIPoolOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIPoolOpKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
W
wanghaox 已提交
290
    roi_pool_grad,
Q
QI JUN 已提交
291
    ops::GPUROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, float>,
J
jerrywgz 已提交
292
    ops::GPUROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, double>);