fusion_gru_op.cc 18.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_gru_op.h"
T
tensor-tang 已提交
16
#include <cstring>  // for memcpy
T
tensor-tang 已提交
17
#include <string>
18
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/blas.h"
20
#include "paddle/fluid/operators/math/fc.h"
T
tensor-tang 已提交
21 22 23 24 25 26
#include "paddle/fluid/operators/math/sequence2batch.h"

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
27 28 29 30 31 32
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightX"), "Input", "WeightX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasInput("WeightH"), "Input", "WeightH", "fusion_gru");

  OP_INOUT_CHECK(ctx->HasOutput("XX"), "Output", "XX", "fusion_gru");
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "fusion_gru");
T
tensor-tang 已提交
33 34

  auto x_dims = ctx->GetInputDim("X");
35 36 37 38 39
  PADDLE_ENFORCE_EQ(x_dims.size(), 2,
                    platform::errors::InvalidArgument(
                        "Input(X)'s rank must be 2, but received input dim "
                        "size is:%d, input dim is:[%s]",
                        x_dims.size(), x_dims));
T
tensor-tang 已提交
40 41 42

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
43 44 45 46
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightX) should be 2, but received "
                        "WeightX dim size is:%d, WeightX dim is:[%s] ",
                        wx_dims.size(), wx_dims));
T
tensor-tang 已提交
47
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
48 49 50 51 52
                    platform::errors::InvalidArgument(
                        "The first dimension of Input(WeightX) "
                        "should equal to second dimension of input x, but "
                        "received WeightX dimension is:%d, x dimension is:%d",
                        wx_dims[0], x_dims[1]));
T
tensor-tang 已提交
53 54 55

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
56

T
tensor-tang 已提交
57
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
58 59 60 61
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightH) should be 2, but received "
                        "WeightH dim size is:%d, WeightH dim is:[%s]",
                        wh_dims.size(), wh_dims));
T
tensor-tang 已提交
62
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
63 64 65 66 67 68
                    platform::errors::InvalidArgument(
                        "The first dimension of WeightH "
                        "should equal to frame_size, but received WeightH's "
                        "first dimension is: "
                        "%d, frame size is:%d",
                        wh_dims[0], frame_size));
T
tensor-tang 已提交
69
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
70 71 72 73 74
                    platform::errors::InvalidArgument(
                        "The second dimension of Input(WeightH) "
                        "should equal to 3 * frame_size, but received WeightH "
                        "is:%d, frame size is:%d",
                        wh_dims[1], frame_size));
T
tensor-tang 已提交
75

76
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
77 78
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
79 80 81 82
                      platform::errors::InvalidArgument(
                          "The width of H0 must be equal to frame_size, but "
                          "receiced the width of H0 is:%d, frame size is:%d",
                          h0_dims[1], frame_size));
T
tensor-tang 已提交
83
  }
84
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
85
    auto b_dims = ctx->GetInputDim("Bias");
86 87 88 89 90
    PADDLE_ENFORCE_EQ(b_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "The rank of Input(Bias) should be 2, but received "
                          "Bias rank is:%d, Bias dim is:[%s]",
                          b_dims.size(), b_dims));
T
tensor-tang 已提交
91
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
92 93 94 95
                      platform::errors::InvalidArgument(
                          "The first dimension of Input(Bias) should be 1, but "
                          "received Bias first dim is:%d, Bias dim is:[%s]",
                          b_dims[0], b_dims));
T
tensor-tang 已提交
96
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
97 98 99 100
                      platform::errors::InvalidArgument(
                          "The shape of Bias must be [1, frame_size * 3], but "
                          "received bias dim is:[%s], frame size is:%d",
                          b_dims, frame_size));
T
tensor-tang 已提交
101
  }
T
tensor-tang 已提交
102 103 104
  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
105
  int xx_width;
T
tensor-tang 已提交
106
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
107 108 109
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
110 111 112 113 114 115
    OP_INOUT_CHECK(ctx->HasOutput("ReorderedH0"), "Output", "ReorderedH0",
                   "fusion_gru");
    OP_INOUT_CHECK(ctx->HasOutput("BatchedInput"), "Output", "BatchedInput",
                   "fusion_gru");
    OP_INOUT_CHECK(ctx->HasOutput("BatchedOut"), "Output", "BatchedOut",
                   "fusion_gru");
T
tensor-tang 已提交
116 117
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
118
  }
T
tensor-tang 已提交
119 120
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
121 122 123 124
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
125 126
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context());
T
tensor-tang 已提交
127 128 129
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
130 131
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
132
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
133 134
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
135 136 137 138 139
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
140 141 142 143
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
144 145 146 147 148
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
149
  AddInput("Bias",
T
tensor-tang 已提交
150 151 152
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
153
      .AsDispensable();
T
tensor-tang 已提交
154 155
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
156
  AddOutput("XX",
T
tensor-tang 已提交
157
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
158 159 160
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
161
      .AsIntermediate();
T
tensor-tang 已提交
162 163 164 165
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
166
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
167
      .AsIntermediate();
T
tensor-tang 已提交
168
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
169 170 171 172 173 174 175 176 177 178
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
翟飞跃 已提交
179
                "(bool, default: False) "
T
tensor-tang 已提交
180 181
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
182
  AddAttr<bool>("use_seq",
翟飞跃 已提交
183
                "(bool, default: True) "
T
tensor-tang 已提交
184 185
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
T
tensor-tang 已提交
186 187 188 189 190 191 192
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
193
template <typename T>
T
tensor-tang 已提交
194 195
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
196
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
197
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
198 199 200 201 202 203
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

T
tensor-tang 已提交
204 205 206 207 208 209 210 211 212 213
#define INIT_BASE_DEFINES                  \
  auto* x = ctx.Input<LoDTensor>("X");     \
  auto* wh = ctx.Input<Tensor>("WeightH"); \
  auto* xx = ctx.Output<LoDTensor>("XX");  \
  auto x_lod = x->lod();                   \
  auto x_dims = x->dims();   /* T x M*/    \
  auto wh_dims = wh->dims(); /* D x 3D*/   \
  const int total_T = x_dims[0];           \
  const int D3 = wh_dims[1]

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
#define INIT_OTHER_DEFINES                                                   \
  auto* h0 = ctx.Input<Tensor>("H0");                                        \
  auto* wx = ctx.Input<Tensor>("WeightX");                                   \
  auto* bias = ctx.Input<Tensor>("Bias");                                    \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden");                        \
  bool is_reverse = ctx.Attr<bool>("is_reverse");                            \
  const int M = x_dims[1];                                                   \
  const int D = wh_dims[0];                                                  \
  const int D2 = D * 2;                                                      \
  const jit::gru_attr_t attr(                                                \
      D, jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")),       \
      jit::to_kerneltype(ctx.Attr<std::string>("activation")));              \
  jit::gru_t one_step;                                                       \
  auto ComputeH1 =                                                           \
      jit::KernelFuncs<jit::GRUH1Tuple<T>, platform::CPUPlace>::Cache().At(  \
          attr);                                                             \
  auto ComputeHtPart1 =                                                      \
      jit::KernelFuncs<jit::GRUHtPart1Tuple<T>, platform::CPUPlace>::Cache() \
          .At(attr);                                                         \
  auto ComputeHtPart2 =                                                      \
      jit::KernelFuncs<jit::GRUHtPart2Tuple<T>, platform::CPUPlace>::Cache() \
          .At(attr);                                                         \
  const T* x_data = x->data<T>();                                            \
  const T* wx_data = wx->data<T>();                                          \
  const T* wh_data = wh->data<T>();                                          \
  auto place = ctx.GetPlace();                                               \
T
tensor-tang 已提交
240
  T* xx_data = xx->mutable_data<T>(place)
T
tensor-tang 已提交
241

T
tensor-tang 已提交
242 243
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
244 245
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
246
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
247
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
248
    const T* wh_state_data = wh_data + D * D2;
T
tensor-tang 已提交
249
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
250
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
251 252 253 254 255

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    math::FCFunctor<DeviceContext, T> fc;
    fc(dev_ctx, total_T, D3, M, x_data, wx_data, xx_data,
       bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
273
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
274 275 276 277
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
278 279
        one_step.gates = xx_data;
        one_step.ht = hidden_out_data;
280
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
281 282 283 284 285 286 287 288 289
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
                  D3);
290 291 292
        one_step.gates = xx_data;
        one_step.ht_1 = prev_hidden_data;
        one_step.ht = hidden_out_data;
293
        ComputeHtPart1(&one_step, &attr);
T
tensor-tang 已提交
294 295 296 297
        // gemm rt * Ws
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
                  hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
                  xx_data + D2, D3);
298
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
299 300 301 302 303 304 305 306
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
307
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
308 309
    INIT_BASE_DEFINES;
    if (x_lod[0].size() == 2) {
310
      xx->Resize({total_T, D3});
T
tensor-tang 已提交
311 312 313
      SeqCompute(ctx);
      return;
    }
T
tensor-tang 已提交
314
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
315 316 317
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
318 319 320
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_out_data = batched_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
T
tensor-tang 已提交
321 322 323
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
324 325

    math::FCFunctor<DeviceContext, T> fc;
T
tensor-tang 已提交
326
    if (M > D3) {
327 328
      fc(dev_ctx, total_T, D3, M, x_data, wx_data, xx_data,
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
329
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
330 331
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
332
      batched_input->set_lod(xx->lod());
333 334
      fc(dev_ctx, total_T, D3, M, xx_data, wx_data, batched_input_data,
         bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
335 336
    }

T
tensor-tang 已提交
337 338 339 340
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
341

T
tensor-tang 已提交
342
    int tstart = 0;
T
tensor-tang 已提交
343
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
344
    if (h0) {
T
tensor-tang 已提交
345
      // reorder h0
T
tensor-tang 已提交
346
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
T
tensor-tang 已提交
347 348 349 350 351 352 353
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
354
    } else {
T
tensor-tang 已提交
355 356 357 358 359
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
360 361
        one_step.gates = cur_in_data;
        one_step.ht = cur_out_data;
362
        ComputeH1(&one_step, &attr);
T
tensor-tang 已提交
363 364 365 366 367 368
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
369
    }
T
tensor-tang 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
                prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
                batched_input_data, D3);

      T* cur_batched_data = batched_input_data;
384
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
385 386
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
387 388 389
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
390
        ComputeHtPart1(&one_step, &attr);
391

T
tensor-tang 已提交
392 393
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
394
        cur_out_data += D;
T
tensor-tang 已提交
395 396
      }

T
tensor-tang 已提交
397
      cur_batched_data = batched_input_data;
398
      cur_out_data = batched_out_data;
T
tensor-tang 已提交
399
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
400
                cur_out_data, D, wh_state_data, D, static_cast<T>(1),
T
tensor-tang 已提交
401 402 403 404
                cur_batched_data + D2, D3);

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
405 406 407
        one_step.gates = cur_batched_data;
        one_step.ht_1 = cur_prev_hidden_data;
        one_step.ht = cur_out_data;
408
        ComputeHtPart2(&one_step, &attr);
T
tensor-tang 已提交
409 410 411
        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
412
      }
T
tensor-tang 已提交
413 414 415
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
416
    }
T
tensor-tang 已提交
417

T
tensor-tang 已提交
418
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
419 420
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
421
  }
T
tensor-tang 已提交
422 423
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
424 425 426 427 428 429
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
430 431
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker);

T
tensor-tang 已提交
432 433
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
                       ops::FusionGRUKernel<double>);