event_node.cc 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/profiler/event_node.h"

#include <limits.h>
#include <algorithm>
#include <deque>
#include <set>
#include <stack>

20 21
#include "paddle/fluid/platform/profiler/utils.h"

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
namespace paddle {
namespace platform {

HostTraceEventNode::~HostTraceEventNode() {
  // delete all runtime nodes and recursive delete children
  for (auto it = runtime_node_ptrs_.begin(); it != runtime_node_ptrs_.end();
       ++it) {
    delete *it;
  }
  for (auto it = children_.begin(); it != children_.end(); ++it) {
    delete *it;
  }
}

CudaRuntimeTraceEventNode::~CudaRuntimeTraceEventNode() {
  // delete all device nodes
  for (auto it = device_node_ptrs_.begin(); it != device_node_ptrs_.end();
       ++it) {
    delete *it;
  }
}

NodeTrees::~NodeTrees() {
  // delete all root nodes
  for (auto it = thread_event_trees_map_.begin();
47 48
       it != thread_event_trees_map_.end();
       ++it) {
49 50 51 52 53 54
    delete it->second;
  }
}

void NodeTrees::BuildTrees(
    const std::vector<HostTraceEventNode*>& host_event_nodes,
55 56 57 58 59
    const std::vector<CudaRuntimeTraceEventNode*>& runtime_event_nodes,
    const std::vector<DeviceTraceEventNode*>& device_event_nodes,
    const std::vector<MemTraceEventNode*>& mem_event_nodes,
    const std::vector<OperatorSupplementEventNode*>& op_supplement_events) {
  // separate Host Event Nodes into different threads
60 61 62 63 64 65
  std::map<uint64_t, std::vector<HostTraceEventNode*>>
      thread2host_event_nodes;  // used to store HostTraceEventNodes per thread
  std::map<uint64_t, std::vector<CudaRuntimeTraceEventNode*>>
      thread2runtime_event_nodes;  // used to store CudaRuntimeTraceEventNode
                                   // per
                                   // thread
66 67 68 69 70 71 72 73 74
  std::map<uint64_t, std::vector<MemTraceEventNode*>>
      thread2mem_event_nodes;  // used to store MemTraceEventNode
                               // per
                               // thread
  std::map<uint64_t, std::vector<OperatorSupplementEventNode*>>
      thread2op_supplement_event_nodes;  // used to store
                                         // OperatorSupplementEventNode
                                         // per
                                         // thread
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  std::map<uint32_t, CudaRuntimeTraceEventNode*>
      correlation_id2runtime_event_node;  // used to store the relation between
                                          // correlation id and runtime node
  // construct thread2host_event_nodes
  for (auto it = host_event_nodes.begin(); it != host_event_nodes.end(); ++it) {
    thread2host_event_nodes[(*it)->ThreadId()].push_back(*it);
  }
  // construct thread2runtime_event_nodes and
  // correlation_id2runtime_event_node
  for (auto it = runtime_event_nodes.begin(); it != runtime_event_nodes.end();
       ++it) {
    thread2runtime_event_nodes[(*it)->ThreadId()].push_back(*it);
    correlation_id2runtime_event_node[(*it)->CorrelationId()] = *it;
  }
  // associate CudaRuntimeTraceEventNode and DeviceTraceEventNode
  // construct correlation_id2device_event_nodes
  for (auto it = device_event_nodes.begin(); it != device_event_nodes.end();
       ++it) {
    auto dst_iter =
        correlation_id2runtime_event_node.find((*it)->CorrelationId());
95 96 97
    if (dst_iter == correlation_id2runtime_event_node.end()) {
      continue;
    }
98 99
    dst_iter->second->AddDeviceTraceEventNode(*it);
  }
100 101 102 103 104 105 106 107 108
  // construct thread2mem_event_nodes
  for (auto it = mem_event_nodes.begin(); it != mem_event_nodes.end(); ++it) {
    thread2mem_event_nodes[(*it)->ThreadId()].push_back(*it);
  }
  // construct thread2op_supplement_event_nodes
  for (auto it = op_supplement_events.begin(); it != op_supplement_events.end();
       ++it) {
    thread2op_supplement_event_nodes[(*it)->ThreadId()].push_back(*it);
  }
109 110 111 112 113 114
  // sort host event nodes and runtime event nodes according to start_ns and
  // end_ns
  // the smaller start_ns is, the further ahead position is.
  // when start_ns of two nodes are equal, the one with bigger end_ns should be
  // ahead.
  for (auto it = thread2host_event_nodes.begin();
115 116 117 118
       it != thread2host_event_nodes.end();
       ++it) {
    std::sort(it->second.begin(),
              it->second.end(),
119 120 121 122 123 124 125 126 127 128 129 130
              [](HostTraceEventNode* node1, HostTraceEventNode* node2) {
                if (node1->StartNs() < node2->StartNs()) {
                  return true;
                }
                if ((node1->StartNs() == node2->StartNs()) &&
                    (node1->EndNs() > node2->EndNs())) {
                  return true;
                }
                return false;
              });
  }
  for (auto it = thread2runtime_event_nodes.begin();
131 132
       it != thread2runtime_event_nodes.end();
       ++it) {
133
    std::sort(
134 135
        it->second.begin(),
        it->second.end(),
136 137 138 139 140 141 142 143 144 145 146
        [](CudaRuntimeTraceEventNode* node1, CudaRuntimeTraceEventNode* node2) {
          if (node1->StartNs() < node2->StartNs()) {
            return true;
          }
          if ((node1->StartNs() == node2->StartNs()) &&
              (node1->EndNs() > node2->EndNs())) {
            return true;
          }
          return false;
        });
  }
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  // sort mem event nodes and operator supplement event nodes
  for (auto it = thread2mem_event_nodes.begin();
       it != thread2mem_event_nodes.end();
       ++it) {
    std::sort(it->second.begin(),
              it->second.end(),
              [](MemTraceEventNode* node1, MemTraceEventNode* node2) {
                if (node1->TimeStampNs() <= node2->TimeStampNs()) {
                  return true;
                }
                return false;
              });
  }

  for (auto it = thread2op_supplement_event_nodes.begin();
       it != thread2op_supplement_event_nodes.end();
       ++it) {
    std::sort(it->second.begin(),
              it->second.end(),
              [](OperatorSupplementEventNode* node1,
                 OperatorSupplementEventNode* node2) {
                if (node1->TimeStampNs() <= node2->TimeStampNs()) {
                  return true;
                }
                return false;
              });
  }
174 175 176 177

  // construct trees
  std::set<uint64_t> thread_set;
  for (auto it = thread2host_event_nodes.begin();
178 179
       it != thread2host_event_nodes.end();
       ++it) {
180 181 182 183
    thread_set.insert(it->first);
  }

  for (auto it = thread2runtime_event_nodes.begin();
184 185 186 187 188 189 190 191 192 193 194 195
       it != thread2runtime_event_nodes.end();
       ++it) {
    thread_set.insert(it->first);
  }
  for (auto it = thread2mem_event_nodes.begin();
       it != thread2mem_event_nodes.end();
       ++it) {
    thread_set.insert(it->first);
  }
  for (auto it = thread2op_supplement_event_nodes.begin();
       it != thread2op_supplement_event_nodes.end();
       ++it) {
196 197 198 199
    thread_set.insert(it->first);
  }

  for (auto it = thread_set.begin(); it != thread_set.end(); ++it) {
200 201 202 203 204
    thread_event_trees_map_[*it] =
        BuildTreeRelationship(thread2host_event_nodes[*it],
                              thread2runtime_event_nodes[*it],
                              thread2mem_event_nodes[*it],
                              thread2op_supplement_event_nodes[*it]);
205 206 207 208 209
  }
}

HostTraceEventNode* NodeTrees::BuildTreeRelationship(
    std::vector<HostTraceEventNode*> host_event_nodes,
210 211 212
    std::vector<CudaRuntimeTraceEventNode*> runtime_event_nodes,
    std::vector<MemTraceEventNode*> mem_event_nodes,
    std::vector<OperatorSupplementEventNode*> op_supplement_events) {
213 214 215
  // a stack used for analyse relationship
  auto node_stack = std::vector<HostTraceEventNode*>();
  // root node, top level
216 217 218 219 220 221 222
  auto root_node =
      new HostTraceEventNode(HostTraceEvent(std::string("root node"),
                                            TracerEventType::UserDefined,
                                            0,
                                            ULLONG_MAX,
                                            0,
                                            0));
223 224 225 226 227 228 229 230 231
  // push root node into node_stack
  node_stack.push_back(root_node);
  // handle host_event_nodes
  for (auto it = host_event_nodes.begin(); it != host_event_nodes.end(); ++it) {
    while (true) {
      auto stack_top_node = node_stack.back();
      if ((*it)->StartNs() < stack_top_node->EndNs()) {
        // current node is the child of stack_top_node
        PADDLE_ENFORCE_LE(
232 233
            (*it)->EndNs(),
            stack_top_node->EndNs(),
234 235 236 237 238 239 240 241 242 243 244 245 246 247
            platform::errors::Fatal(
                "should not have time range intersection within one thread"));
        stack_top_node->AddChild(*it);
        node_stack.push_back(*it);
        break;
      } else {
        node_stack.pop_back();
        // insert runtime node
        // select runtime nodes which time range within stack_top_node
        std::vector<CudaRuntimeTraceEventNode*>::iterator firstposition;
        std::vector<CudaRuntimeTraceEventNode*>::iterator lastposition =
            runtime_event_nodes.end();
        bool hasenter = false;
        for (auto runtimenode = runtime_event_nodes.begin();
248 249
             runtimenode != runtime_event_nodes.end();
             ++runtimenode) {
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
          if (((*runtimenode)->StartNs() >= stack_top_node->StartNs()) &&
              ((*runtimenode)->EndNs() <= stack_top_node->EndNs())) {
            if (!hasenter) {
              firstposition = runtimenode;
              hasenter = true;
            }
            stack_top_node->AddCudaRuntimeNode(*runtimenode);
          } else {
            // from this runtime node, not within stack_top_node, erase the
            // nodes from runtime_event_nodes
            if ((*runtimenode)->StartNs() > stack_top_node->EndNs()) {
              lastposition = runtimenode;
              break;
            }
          }
        }
        if (hasenter) {
          runtime_event_nodes.erase(firstposition, lastposition);
        }
      }
    }
  }
  // to insert left runtimenode into host_event_nodes
  while (!node_stack.empty()) {
    auto stack_top_node = node_stack.back();
    // insert runtime node
    // select runtime nodes which time range within stack_top_node
    std::vector<CudaRuntimeTraceEventNode*>::iterator firstposition;
    std::vector<CudaRuntimeTraceEventNode*>::iterator lastposition =
        runtime_event_nodes.end();
    bool hasenter = false;
    for (auto runtimenode = runtime_event_nodes.begin();
282 283
         runtimenode != runtime_event_nodes.end();
         ++runtimenode) {
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
      if (((*runtimenode)->StartNs() >= stack_top_node->StartNs()) &&
          ((*runtimenode)->EndNs() <= stack_top_node->EndNs())) {
        if (!hasenter) {
          firstposition = runtimenode;
          hasenter = true;
        }
        stack_top_node->AddCudaRuntimeNode(*runtimenode);
      } else {
        // from this runtime node, not within stack_top_node, erase the
        // nodes from runtime_event_nodes
        if ((*runtimenode)->StartNs() > stack_top_node->EndNs()) {
          lastposition = runtimenode;
          break;
        }
      }
    }
    if (hasenter) {
      runtime_event_nodes.erase(firstposition, lastposition);
    }
    node_stack.pop_back();
  }
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

  // build relationship between host event node and mem event node
  // First, post-order traverse the tree. Then, insert the memory and op
  // supplement node into correct host nodes.
  auto stack = std::stack<HostTraceEventNode*>();
  auto flag_stack = std::stack<int32_t>();
  auto post_order_nodes = std::vector<HostTraceEventNode*>();
  stack.push(root_node);
  flag_stack.push(0);
  while (!stack.empty()) {
    auto current_node = stack.top();
    stack.pop();
    auto flag = flag_stack.top();
    flag_stack.pop();
    if (flag == 0) {
      stack.push(current_node);
      flag_stack.push(1);
      for (auto child = current_node->GetChildren().rbegin();
           child != current_node->GetChildren().rend();
           ++child) {
        stack.push(*child);
        flag_stack.push(0);
      }
    } else {
      post_order_nodes.push_back(current_node);
    }
  }

  for (auto it = post_order_nodes.begin(); it < post_order_nodes.end(); ++it) {
    bool hasenter = false;
    std::vector<MemTraceEventNode*>::iterator firstposition;
    std::vector<MemTraceEventNode*>::iterator lastposition =
        mem_event_nodes.end();
    for (auto mem_it = mem_event_nodes.begin(); mem_it < mem_event_nodes.end();
         ++mem_it) {
      if ((*mem_it)->TimeStampNs() >= (*it)->StartNs() &&
          (*mem_it)->TimeStampNs() <= (*it)->EndNs()) {
        (*it)->AddMemNode(*mem_it);
        if (!hasenter) {
          firstposition = mem_it;
          hasenter = true;
        }
      } else {
        if ((*mem_it)->TimeStampNs() > (*it)->EndNs()) {
          lastposition = mem_it;
          break;
        }
      }
    }
    if (hasenter) {
      mem_event_nodes.erase(firstposition, lastposition);
    }
  }

  // build relationship between host event node and op supplement node
  for (auto it = post_order_nodes.begin(); it < post_order_nodes.end(); ++it) {
    int op_supplement_count = 0;
    bool hasenter = false;
    std::vector<OperatorSupplementEventNode*>::iterator firstposition;
    std::vector<OperatorSupplementEventNode*>::iterator lastposition =
        op_supplement_events.end();
    for (auto op_supplement_it = op_supplement_events.begin();
         op_supplement_it < op_supplement_events.end();
         ++op_supplement_it) {
      if ((*op_supplement_it)->TimeStampNs() >= (*it)->StartNs() &&
          (*op_supplement_it)->TimeStampNs() <= (*it)->EndNs()) {
        if (!hasenter) {
          firstposition = op_supplement_it;
          hasenter = true;
        }
        (*it)->SetOperatorSupplementNode(*op_supplement_it);
        op_supplement_count += 1;
      } else {
        if ((*op_supplement_it)->TimeStampNs() > (*it)->EndNs()) {
          lastposition = op_supplement_it;
          break;
        }
      }
    }
    if (hasenter) {
      op_supplement_events.erase(firstposition, lastposition);
    }
  }

389 390 391 392 393 394 395 396 397 398
  return root_node;
}

std::map<uint64_t, std::vector<HostTraceEventNode*>> NodeTrees::Traverse(
    bool bfs) const {
  // traverse the tree, provide two methods: bfs(breadth first search) or
  // dfs(depth first search)
  std::map<uint64_t, std::vector<HostTraceEventNode*>> thread2host_event_nodes;
  if (bfs == true) {
    for (auto it = thread_event_trees_map_.begin();
399 400
         it != thread_event_trees_map_.end();
         ++it) {
401 402 403 404 405 406 407 408 409
      auto deque = std::deque<HostTraceEventNode*>();
      uint64_t thread_id = it->first;
      auto root_node = it->second;
      deque.push_back(root_node);
      while (!deque.empty()) {
        auto current_node = deque.front();
        deque.pop_front();
        thread2host_event_nodes[thread_id].push_back(current_node);
        for (auto child = current_node->GetChildren().begin();
410 411
             child != current_node->GetChildren().end();
             ++child) {
412 413 414 415 416 417 418
          deque.push_back(*child);
        }
      }
    }

  } else {
    for (auto it = thread_event_trees_map_.begin();
419 420
         it != thread_event_trees_map_.end();
         ++it) {
421 422 423 424 425 426 427 428
      auto stack = std::stack<HostTraceEventNode*>();
      uint64_t thread_id = it->first;
      auto root_node = it->second;
      stack.push(root_node);
      while (!stack.empty()) {
        auto current_node = stack.top();
        stack.pop();
        thread2host_event_nodes[thread_id].push_back(current_node);
429 430 431
        for (auto child = current_node->GetChildren().rbegin();
             child != current_node->GetChildren().rend();
             ++child) {
432 433 434 435 436 437 438 439 440 441 442 443 444
          stack.push(*child);
        }
      }
    }
  }
  return thread2host_event_nodes;
}

void NodeTrees::LogMe(BaseLogger* logger) { logger->LogNodeTrees(*this); }

void NodeTrees::HandleTrees(
    std::function<void(HostTraceEventNode*)> host_event_node_handle,
    std::function<void(CudaRuntimeTraceEventNode*)> runtime_event_node_handle,
445 446 447 448
    std::function<void(DeviceTraceEventNode*)> device_event_node_handle,
    std::function<void(MemTraceEventNode*)> mem_event_node_handle,
    std::function<void(OperatorSupplementEventNode*)>
        op_supplement_node_handle) {
449 450 451 452
  // using different user-defined function to handle different nodes
  const std::map<uint64_t, std::vector<HostTraceEventNode*>>
      thread2host_event_nodes = Traverse(true);
  for (auto it = thread2host_event_nodes.begin();
453 454
       it != thread2host_event_nodes.end();
       ++it) {
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    for (auto hostnode = it->second.begin(); hostnode != it->second.end();
         ++hostnode) {
      if (hostnode != it->second.begin()) {  // skip root node
        host_event_node_handle(*hostnode);
      }
      for (auto runtimenode = (*hostnode)->GetRuntimeTraceEventNodes().begin();
           runtimenode != (*hostnode)->GetRuntimeTraceEventNodes().end();
           ++runtimenode) {
        runtime_event_node_handle(*runtimenode);
        for (auto devicenode =
                 (*runtimenode)->GetDeviceTraceEventNodes().begin();
             devicenode != (*runtimenode)->GetDeviceTraceEventNodes().end();
             ++devicenode) {
          device_event_node_handle(*devicenode);
        }
      }
471 472 473 474 475 476 477 478 479
      for (auto memeventnode = (*hostnode)->GetMemTraceEventNodes().begin();
           memeventnode != (*hostnode)->GetMemTraceEventNodes().end();
           ++memeventnode) {
        mem_event_node_handle(*memeventnode);
      }
      if ((*hostnode)->GetOperatorSupplementEventNode()) {
        op_supplement_node_handle(
            (*hostnode)->GetOperatorSupplementEventNode());
      }
480 481 482 483 484
    }
  }
}
}  // namespace platform
}  // namespace paddle