test_clip_op.py 6.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

W
wanghaoshuang 已提交
17 18
import unittest
import numpy as np
Y
Yang Zhang 已提交
19
import paddle
20 21
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
22
from op_test import OpTest
W
wanghaoshuang 已提交
23 24


25
class TestClipOp(OpTest):
W
wanghaoshuang 已提交
26
    def setUp(self):
27
        self.max_relative_error = 0.006
28 29

        self.inputs = {}
30
        self.initTestCase()
31

32
        self.op_type = "clip"
W
wanghaoshuang 已提交
33
        self.attrs = {}
34 35
        self.attrs['min'] = self.min
        self.attrs['max'] = self.max
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
        if 'Min' in self.inputs:
            min_v = self.inputs['Min']
        else:
            min_v = self.attrs['min']

        if 'Max' in self.inputs:
            max_v = self.inputs['Max']
        else:
            max_v = self.attrs['max']

        input = np.random.random(self.shape).astype("float32")
        input[np.abs(input - min_v) < self.max_relative_error] = 0.5
        input[np.abs(input - max_v) < self.max_relative_error] = 0.5
        self.inputs['X'] = input
        self.outputs = {'Out': np.clip(self.inputs['X'], min_v, max_v)}
W
wanghaoshuang 已提交
51

52 53
    def test_check_output(self):
        self.check_output()
W
wanghaoshuang 已提交
54

55
    def test_check_grad_normal(self):
56
        self.check_grad(['X'], 'Out')
57 58

    def initTestCase(self):
59 60 61 62 63
        self.shape = (4, 10, 10)
        self.max = 0.8
        self.min = 0.3
        self.inputs['Max'] = np.array([0.8]).astype('float32')
        self.inputs['Min'] = np.array([0.1]).astype('float32')
64 65 66 67 68 69


class TestCase1(TestClipOp):
    def initTestCase(self):
        self.shape = (8, 16, 8)
        self.max = 0.7
Y
Yang Yang(Tony) 已提交
70
        self.min = 0.0
71 72 73 74 75


class TestCase2(TestClipOp):
    def initTestCase(self):
        self.shape = (8, 16)
Y
Yang Yang(Tony) 已提交
76 77
        self.max = 1.0
        self.min = 0.0
78

W
wanghaoshuang 已提交
79

80 81 82 83 84
class TestCase3(TestClipOp):
    def initTestCase(self):
        self.shape = (4, 8, 16)
        self.max = 0.7
        self.min = 0.2
W
wanghaoshuang 已提交
85 86


87 88 89 90 91 92 93 94 95
class TestCase4(TestClipOp):
    def initTestCase(self):
        self.shape = (4, 8, 8)
        self.max = 0.7
        self.min = 0.2
        self.inputs['Max'] = np.array([0.8]).astype('float32')
        self.inputs['Min'] = np.array([0.3]).astype('float32')


Y
Yang Zhang 已提交
96 97 98 99 100 101 102
class TestCase5(TestClipOp):
    def initTestCase(self):
        self.shape = (4, 8, 16)
        self.max = 0.5
        self.min = 0.5


103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
class TestClipOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            input_data = np.random.random((2, 4)).astype("float32")

            def test_Variable():
                fluid.layers.clip(x=input_data, min=-1.0, max=1.0)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                x2 = fluid.layers.data(name='x2', shape=[1], dtype='int32')
                fluid.layers.clip(x=x2, min=-1.0, max=1.0)

            self.assertRaises(TypeError, test_dtype)


Y
Yang Zhang 已提交
120 121
class TestClipAPI(unittest.TestCase):
    def test_clip(self):
Y
Yang Zhang 已提交
122
        paddle.enable_static()
Y
Yang Zhang 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        data_shape = [1, 9, 9, 4]
        data = np.random.random(data_shape).astype('float32')
        images = fluid.data(name='image', shape=data_shape, dtype='float32')
        min = fluid.data(name='min', shape=[1], dtype='float32')
        max = fluid.data(name='max', shape=[1], dtype='float32')

        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)

        out_1 = paddle.clip(images, min=min, max=max)
        out_2 = paddle.clip(images, min=0.2, max=0.9)
        out_3 = paddle.clip(images, min=0.3)
        out_4 = paddle.clip(images, max=0.7)
        out_5 = paddle.clip(images, min=min)
        out_6 = paddle.clip(images, max=max)
Y
Yang Zhang 已提交
139 140
        out_7 = paddle.clip(images, max=-1.)
        out_8 = paddle.clip(images)
Y
Yang Zhang 已提交
141
        out_9 = paddle.clip(paddle.cast(images, 'float64'), min=0.2, max=0.9)
Y
Yang Zhang 已提交
142

Y
Yang Zhang 已提交
143
        res1, res2, res3, res4, res5, res6, res7, res8, res9 = exe.run(
Y
Yang Zhang 已提交
144 145 146 147 148 149
            fluid.default_main_program(),
            feed={
                "image": data,
                "min": np.array([0.2]).astype('float32'),
                "max": np.array([0.8]).astype('float32')
            },
Y
Yang Zhang 已提交
150
            fetch_list=[
Y
Yang Zhang 已提交
151
                out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8, out_9
Y
Yang Zhang 已提交
152
            ])
Y
Yang Zhang 已提交
153 154 155 156 157 158 159

        self.assertTrue(np.allclose(res1, data.clip(0.2, 0.8)))
        self.assertTrue(np.allclose(res2, data.clip(0.2, 0.9)))
        self.assertTrue(np.allclose(res3, data.clip(min=0.3)))
        self.assertTrue(np.allclose(res4, data.clip(max=0.7)))
        self.assertTrue(np.allclose(res5, data.clip(min=0.2)))
        self.assertTrue(np.allclose(res6, data.clip(max=0.8)))
Y
Yang Zhang 已提交
160 161
        self.assertTrue(np.allclose(res7, data.clip(max=-1)))
        self.assertTrue(np.allclose(res8, data))
Y
Yang Zhang 已提交
162 163
        self.assertTrue(
            np.allclose(res9, data.astype(np.float64).clip(0.2, 0.9)))
Y
Yang Zhang 已提交
164 165 166 167 168 169 170

    def test_clip_dygraph(self):
        place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        paddle.disable_static(place)
        data_shape = [1, 9, 9, 4]
        data = np.random.random(data_shape).astype('float32')
Z
Zhou Wei 已提交
171 172 173
        images = paddle.to_tensor(data, dtype='float32')
        v_min = paddle.to_tensor(np.array([0.2], dtype=np.float32))
        v_max = paddle.to_tensor(np.array([0.8], dtype=np.float32))
Y
Yang Zhang 已提交
174 175 176

        out_1 = paddle.clip(images, min=0.2, max=0.8)
        out_2 = paddle.clip(images, min=0.2, max=0.9)
177
        out_3 = paddle.clip(images, min=v_min, max=v_max)
Y
Yang Zhang 已提交
178 179 180

        self.assertTrue(np.allclose(out_1.numpy(), data.clip(0.2, 0.8)))
        self.assertTrue(np.allclose(out_2.numpy(), data.clip(0.2, 0.9)))
181
        self.assertTrue(np.allclose(out_3.numpy(), data.clip(0.2, 0.8)))
Y
Yang Zhang 已提交
182 183 184 185 186 187 188 189 190

    def test_errors(self):
        paddle.enable_static()
        x1 = fluid.data(name='x1', shape=[1], dtype="int16")
        x2 = fluid.data(name='x2', shape=[1], dtype="int8")
        self.assertRaises(TypeError, paddle.clip, x=x1, min=0.2, max=0.8)
        self.assertRaises(TypeError, paddle.clip, x=x2, min=0.2, max=0.8)


W
wanghaoshuang 已提交
191 192
if __name__ == '__main__':
    unittest.main()