linear_chain_crf_op.h 17.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
C
caoying03 已提交
19 20 21 22

namespace paddle {
namespace operators {

C
caoying03 已提交
23
template <typename T>
C
caoying03 已提交
24
static inline T NormalizeL1(T* x, size_t len) {
C
caoying03 已提交
25 26 27 28 29
  T sum = 0.;
  for (size_t i = 0; i < len; ++i) sum += x[i];
  // (This comment is from the old LinearChainCRFLayer.)
  // Right now, we just bet that sum won't be zero. If this really happens, we
  // will figure out what should be done then.
30 31 32 33
  PADDLE_ENFORCE_GT(
      sum, 0., platform::errors::InvalidArgument(
                   "The unnormalized probabilities of all possible unfinished "
                   "sequences must be greater than 0."));
C
caoying03 已提交
34 35 36 37 38
  T s = 1. / sum;
  for (size_t i = 0; i < len; ++i) x[i] *= s;
  return sum;
}

39 40 41 42 43 44 45 46
template <typename T>
struct ScalarMul {
  explicit ScalarMul(const T& scalar) : scalar(scalar) {}
  T operator()(const T& val) const { return val * scalar; }

  T scalar;
};

C
caoying03 已提交
47 48
using framework::LoDTensor;
using framework::LoD;
49
using framework::Tensor;
C
caoying03 已提交
50

Q
QI JUN 已提交
51
template <typename DeviceContext, typename T>
C
caoying03 已提交
52
class LinearChainCRFOpKernel : public framework::OpKernel<T> {
C
caoying03 已提交
53
 public:
C
caoying03 已提交
54
  void Compute(const framework::ExecutionContext& ctx) const override {
55 56 57
    const Tensor* emission_weights = ctx.Input<framework::Tensor>("Emission");
    const Tensor* transition_weights =
        ctx.Input<framework::Tensor>("Transition");
58 59 60 61 62

    Tensor* emission_exps = ctx.Output<Tensor>("EmissionExps");
    Tensor* transition_exps = ctx.Output<Tensor>("TransitionExps");
    Tensor* alpha = ctx.Output<Tensor>("Alpha");
    Tensor* ll = ctx.Output<Tensor>("LogLikelihood");
C
caoying03 已提交
63

64 65
    // Because the computation codes only runs on CPU, here the memory for all
    // the outputs is FIXED to be allocated on the CPU memory.
66 67
    emission_exps->mutable_data<T>(platform::CPUPlace());
    alpha->mutable_data<T>(platform::CPUPlace());
68
    transition_exps->mutable_data<T>(platform::CPUPlace());
69 70 71
    auto emission_dims = emission_weights->dims();

    const Tensor* label = ctx.Input<framework::Tensor>("Label");
72 73 74 75 76 77 78
    Tensor emission_weights_tmp = *emission_weights;
    Tensor label_tmp = *label;
    Tensor emission_exps_tmp = *emission_exps;
    Tensor alpha_tmp = *alpha;
    int64_t seq_num = 0;
    int64_t batch_size;
    int64_t tag_num;
79
    const int64_t* length_data = nullptr;
80 81 82
    framework::LoD in_lod;
    if (ctx.HasInput("Length")) {
      const Tensor* label_length = ctx.Input<framework::Tensor>("Length");
83 84
      length_data = label_length->data<int64_t>();
      seq_num = label_length->numel();
85 86 87 88 89 90
      PADDLE_ENFORCE_EQ(
          seq_num, emission_dims[0],
          platform::errors::InvalidArgument(
              "the size of Input(length) must be equal to "
              "emission_dims[0]. But input_size = %d, emission_dims[0] = %d.",
              seq_num, emission_dims[0]));
91
      auto label_dims = label->dims();
92 93 94 95 96 97
      PADDLE_ENFORCE_EQ(
          seq_num, label_dims[0],
          platform::errors::InvalidArgument(
              "the size of Input(length) must be equal to "
              "label_dims[0]. But input_size = %d, label_dims[0] = %d.",
              seq_num, label_dims[0]));
98 99 100 101 102 103 104 105 106

      batch_size = emission_dims[0] * emission_dims[1];
      tag_num = emission_dims[2];
      emission_weights_tmp.Resize({batch_size, tag_num});
      label_tmp.Resize({batch_size, 1});
      alpha_tmp.Resize({batch_size, tag_num});
      emission_exps_tmp.Resize({batch_size, tag_num});
      math::set_constant(ctx.device_context(), emission_exps, 0.0);
      math::set_constant(ctx.device_context(), alpha, 0.0);
107
    } else {
108
      in_lod = ctx.Input<LoDTensor>("Label")->lod();
109 110 111
      PADDLE_ENFORCE_NE(in_lod.size(), 0,
                        platform::errors::InvalidArgument(
                            "Input(Label) must be a sequence."));
112
      seq_num = in_lod[0].size() - 1;
113 114 115 116
      batch_size = emission_dims[0];
      tag_num = emission_dims[1];
    }

117 118
    // Resize the output tensor to its correct dimension.
    ll->Resize({seq_num, 1});
119 120
    ll->mutable_data<T>(platform::CPUPlace());
    // Now, all the inputs and outputs should be on the CPU memory.
C
caoying03 已提交
121 122
    Tensor emission_row_max;
    emission_row_max.mutable_data<T>(
C
Cao Ying 已提交
123
        framework::make_ddim({static_cast<int64_t>(batch_size), 1}),
124
        platform::CPUPlace());
Q
QI JUN 已提交
125 126
    auto& place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
W
wuhuanzhou 已提交
127 128
    auto x = framework::EigenMatrix<T>::From(emission_weights_tmp);
    auto x_row_max = framework::EigenMatrix<T>::From(emission_row_max);
C
caoying03 已提交
129 130
    x_row_max.device(place) =
        x.maximum(Eigen::DSizes<int, 1>(1))
131
            .reshape(Eigen::DSizes<int, 2>(static_cast<int>(batch_size), 1));
W
wuhuanzhou 已提交
132
    auto x_exps = framework::EigenMatrix<T>::From(emission_exps_tmp);
C
caoying03 已提交
133 134
    x_exps.device(place) =
        (x - x_row_max.broadcast(Eigen::DSizes<int, 2>(1, tag_num))).exp();
W
wuhuanzhou 已提交
135 136
    auto w = framework::EigenMatrix<T>::From(*transition_weights);
    auto w_exps = framework::EigenMatrix<T>::From(*transition_exps);
C
caoying03 已提交
137
    w_exps.device(place) = w.exp();
138
    T* log_likelihood = ll->data<T>();
139 140 141 142
    for (int64_t i = 0; i < seq_num; ++i) {
      int64_t start_pos = 0;
      int64_t end_pos = 0;
      if (ctx.HasInput("Length")) {
143
        start_pos = i * emission_dims[1];
144
        end_pos = start_pos + length_data[i];
145
      } else {
146 147
        start_pos = static_cast<int64_t>(in_lod[0][i]);
        end_pos = static_cast<int64_t>(in_lod[0][i + 1]);
148
      }
C
caoying03 已提交
149 150 151 152 153
      if (end_pos == start_pos) {
        // If an empty input sequence is given, pad 0 for its cost.
        log_likelihood[i] = 0.;
        continue;
      }
154
      const Tensor one_seq = emission_weights_tmp.Slice(start_pos, end_pos);
C
caoying03 已提交
155
      Tensor one_seq_row_max = emission_row_max.Slice(start_pos, end_pos);
156 157 158
      Tensor one_seq_exps = emission_exps_tmp.Slice(start_pos, end_pos);
      const Tensor one_seq_label = label_tmp.Slice(start_pos, end_pos);
      Tensor one_seq_alpha = alpha_tmp.Slice(start_pos, end_pos);
C
caoying03 已提交
159 160 161 162
      log_likelihood[i] = ForwardOneSequence(
          one_seq, one_seq_row_max, one_seq_exps, *transition_weights,
          *transition_exps, one_seq_label, &one_seq_alpha);
    }
163 164 165
  };

 private:
C
caoying03 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
  T ForwardOneSequence(const Tensor& emission, const Tensor& emission_row_max,
                       const Tensor& emission_exps, const Tensor& trans_weights,
                       const Tensor& trans_weight_exps, const Tensor& label,
                       Tensor* alpha) const {
    const T* x = emission.data<T>();
    const T* x_row_max = emission_row_max.data<T>();
    const T* x_exps = emission_exps.data<T>();
    const T* w = trans_weights.data<T>();
    const T* w_exps = trans_weight_exps.data<T>();
    T* alpha_value = alpha->data<T>();

    auto x_dims = emission.dims();
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];
    // The 1st row of w are transition weights for start mask.
    // The 2nd row of w are transition weights for end mask.
    // Transition weights between other tags begin from the 3rd row of w.
    const size_t state_trans_base_idx = 2;

    for (size_t i = 0; i < tag_num; ++i) {
      alpha_value[i] = w_exps[i] * x_exps[i];
    }
    T ll = -x_row_max[0] - std::log(NormalizeL1<T>(alpha_value, tag_num));

    for (size_t k = 1; k < seq_length; ++k) {
      for (size_t i = 0; i < tag_num; ++i) {
        T sum = 0.;
        for (size_t j = 0; j < tag_num; ++j) {
C
caoying03 已提交
194
          sum += alpha_value[(k - 1) * tag_num + j] *  // (*)
C
caoying03 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
                 w_exps[(j + state_trans_base_idx) * tag_num + i];
        }
        alpha_value[k * tag_num + i] = x_exps[k * tag_num + i] * sum;
      }
      // NormalizeL1 is to avoid underflow or overflow at (*).
      ll -= x_row_max[k] +
            std::log(NormalizeL1<T>(alpha_value + k * tag_num, tag_num));
    }
    T sum = 0.;
    for (size_t i = 0; i < tag_num; ++i) {
      sum += alpha_value[(seq_length - 1) * tag_num + i] * w_exps[tag_num + i];
    }
    ll -= std::log(sum);
    // Now ll is equal to -log(Z).

Q
Qiao Longfei 已提交
210
    const int64_t* lbl = label.data<int64_t>();
C
caoying03 已提交
211
    PADDLE_ENFORCE_LT(
C
Cao Ying 已提交
212
        static_cast<size_t>(*std::max_element(lbl, lbl + seq_length)), tag_num,
213 214
        platform::errors::InvalidArgument(
            "An invalid tag label that execesses the largest tag number."));
C
caoying03 已提交
215 216 217 218 219 220 221 222 223

    // Calculate the nominator part, which depends on the label sequence.
    ll += w[lbl[0]] /*start transition*/ + x[lbl[0]] +
          w[tag_num + lbl[seq_length - 1]] /*end transition*/;
    for (size_t k = 1; k < seq_length; ++k) {
      ll += x[k * tag_num + lbl[k]] +
            w[(lbl[k - 1] + state_trans_base_idx) * tag_num + lbl[k]];
    }
    return -ll;
C
caoying03 已提交
224
  }
C
caoying03 已提交
225 226
};

Q
QI JUN 已提交
227
template <typename DeviceContext, typename T>
C
caoying03 已提交
228
class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
C
caoying03 已提交
229
 public:
C
caoying03 已提交
230
  void Compute(const framework::ExecutionContext& ctx) const override {
231
    const Tensor* label = ctx.Input<Tensor>("Label");
232 233 234 235 236 237 238
    const Tensor* emission_exps = ctx.Input<Tensor>("EmissionExps");
    const Tensor* transition_exps = ctx.Input<Tensor>("TransitionExps");
    const Tensor* alpha = ctx.Input<Tensor>("Alpha");
    const T* ll_grad =
        ctx.Input<Tensor>(framework::GradVarName("LogLikelihood"))->data<T>();
    Tensor* emission_grad =
        ctx.Output<Tensor>(framework::GradVarName("Emission"));
239 240 241
    auto* emission_grad_data =
        emission_grad->mutable_data<T>(platform::CPUPlace());
    memset(emission_grad_data, 0, emission_grad->numel() * sizeof(T));
242 243 244 245
    Tensor alpha_tmp = *alpha;
    Tensor label_tmp = *label;
    Tensor emission_exps_tmp = *emission_exps;
    Tensor emission_grad_tmp = *emission_grad;
246
    // getting seq_num  using padding or not
247 248
    int64_t seq_num = 0;
    framework::LoD in_lod;
249
    const int64_t* length_data = nullptr;
250 251
    if (ctx.HasInput("Length")) {
      const Tensor* label_length = ctx.Input<framework::Tensor>("Length");
252 253 254 255 256 257
      length_data = label_length->data<int64_t>();
      seq_num = label_length->numel();
      auto emission_dims = emission_grad->dims();
      auto label_dims = label->dims();
      emission_grad_tmp.Resize(
          {emission_dims[0] * emission_dims[1], emission_dims[2]});
258
      label_tmp.Resize({label_dims[0] * label_dims[1], 1});
259 260 261 262
      alpha_tmp.Resize({emission_dims[0] * emission_dims[1], emission_dims[2]});
      emission_exps_tmp.Resize(
          {emission_dims[0] * emission_dims[1], emission_dims[2]});
    } else {
263
      in_lod = ctx.Input<LoDTensor>("Label")->lod();
264 265 266
      PADDLE_ENFORCE_NE(in_lod.size(), 0,
                        platform::errors::InvalidArgument(
                            "Input(Label) must be a sequence."));
267
      seq_num = static_cast<int64_t>(in_lod[0].size() - 1);
268 269
    }

270 271
    Tensor* transition_grad =
        ctx.Output<Tensor>(framework::GradVarName("Transition"));
C
caoying03 已提交
272 273 274

    // TODO(caoying) Fix this constraint. When the Input(Emission) is from the
    // data reader operator, it can have no gradients.
275 276
    if (transition_grad) {
      transition_grad->mutable_data<T>(platform::CPUPlace());
Q
QI JUN 已提交
277
      math::set_constant(ctx.device_context(), transition_grad, 0.);
C
caoying03 已提交
278
    }
279
    // Now, all the inputs and outputs should be on the CPU memory.
C
caoying03 已提交
280 281 282
    auto emission_dims = emission_exps->dims();
    // Beta is the memo table used in dynamic programming to calculate the
    // backwark vectors. For a backward vector i (the i-th row of beta), it
283 284
    // captures the unnormalized probabilities of partial sequences starting
    // at position i.
C
caoying03 已提交
285
    Tensor beta;
286 287
    beta.mutable_data<T>(emission_dims, platform::CPUPlace());
    if (ctx.HasInput("Length")) {
288 289
      beta.Resize({emission_dims[0] * emission_dims[1], emission_dims[2]});
    }
290 291 292 293 294

    for (int64_t i = 0; i < seq_num; ++i) {
      int64_t start_pos = 0;
      int64_t end_pos = 0;
      if (ctx.HasInput("Length")) {
295
        start_pos = i * emission_dims[1];
296
        end_pos = start_pos + length_data[i];
297
      } else {
298 299 300 301 302 303
        start_pos = static_cast<int64_t>(in_lod[0][i]);
        end_pos = static_cast<int64_t>(in_lod[0][i + 1]);
      }

      if (end_pos == start_pos) {
        continue;
304
      }
C
caoying03 已提交
305
      const Tensor one_seq_emission_exps =
306 307 308
          emission_exps_tmp.Slice(start_pos, end_pos);
      const Tensor one_seq_label = label_tmp.Slice(start_pos, end_pos);
      const Tensor one_seq_alpha = alpha_tmp.Slice(start_pos, end_pos);
C
caoying03 已提交
309
      Tensor one_seq_beta = beta.Slice(start_pos, end_pos);
310 311
      Tensor one_seq_emission_grad =
          emission_grad_tmp.Slice(start_pos, end_pos);
Q
QI JUN 已提交
312 313 314 315
      BackwardOneSequence(
          ctx.template device_context<platform::CPUDeviceContext>(), ll_grad[i],
          one_seq_emission_exps, *transition_exps, one_seq_alpha, one_seq_label,
          &one_seq_beta, transition_grad, &one_seq_emission_grad);
316
    }
C
caoying03 已提交
317
  };
C
caoying03 已提交
318

319
 private:
Q
QI JUN 已提交
320 321
  void BackwardOneSequence(const platform::CPUDeviceContext& ctx,
                           const T ll_grad, const Tensor& emission_exps,
C
caoying03 已提交
322 323
                           const Tensor& transition_exps, const Tensor& alpha,
                           const Tensor& label, Tensor* beta,
C
caoying03 已提交
324
                           Tensor* transition_grad,
C
caoying03 已提交
325 326 327
                           Tensor* emission_grad) const {
    const T* w_exps = transition_exps.data<T>();
    const T* x_exps = emission_exps.data<T>();
Q
Qiao Longfei 已提交
328
    const int64_t* label_value = label.data<int64_t>();
C
caoying03 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    T* beta_value = beta->data<T>();
    auto x_dims = emission_exps.dims();
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];
    const size_t state_trans_base_idx = 2;

    // Calculate the backward vectors: beta.
    // First, calculate the initialition state.
    for (size_t i = 0; i < tag_num; ++i) {
      beta_value[(seq_length - 1) * tag_num + i] = w_exps[tag_num + i];
    }
    NormalizeL1<T>(beta_value + (seq_length - 1) * tag_num, tag_num);
    for (int k = static_cast<int>(seq_length) - 2; k >= 0; --k) {
      for (size_t i = 0; i < tag_num; ++i) {
        T sum = 0.;
        for (size_t j = 0; j < tag_num; ++j) {
C
caoying03 已提交
345
          sum += w_exps[(i + state_trans_base_idx) * tag_num + j] *  // (**)
C
caoying03 已提交
346 347 348 349 350 351 352 353 354
                 x_exps[(k + 1) * tag_num + j] *
                 beta_value[(k + 1) * tag_num + j];
        }
        beta_value[k * tag_num + i] = sum;
      }
      // NormalizeL1 is to avoid underflow or overflow at (**).
      NormalizeL1<T>(beta_value + k * tag_num, tag_num);
    }

W
wuhuanzhou 已提交
355 356 357
    auto x_grad_mat = framework::EigenMatrix<T>::From(*emission_grad);
    auto alpha_mat = framework::EigenMatrix<T>::From(alpha);
    auto beta_mat = framework::EigenMatrix<T>::From(*beta);
358

Q
QI JUN 已提交
359
    auto* place = ctx.eigen_device();
C
caoying03 已提交
360 361 362 363
    auto prob = alpha_mat * beta_mat;
    auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
                       .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
                       .broadcast(Eigen::DSizes<int, 2>(1, tag_num));
364 365
    x_grad_mat.device(*place) =
        (prob / row_sum).unaryExpr(ScalarMul<T>(ll_grad));
C
caoying03 已提交
366 367

    for (size_t k = 0; k < seq_length; ++k) {
368
      x_grad_mat(k, label_value[k]) -= static_cast<T>(ll_grad);
C
caoying03 已提交
369 370 371 372 373
    }

    if (transition_grad) {
      T* trans_grad = transition_grad->data<T>();
      for (size_t k = 0; k < tag_num; ++k) {
374 375
        // Do not multiply by the output gradient here, because x_grad_mat has
        // alrealy done this.
C
caoying03 已提交
376 377 378 379 380
        trans_grad[k] += x_grad_mat(/*from start state*/ 0, k);
        trans_grad[tag_num + k] +=
            x_grad_mat(/*to end state*/ seq_length - 1, k);
      }

W
wuhuanzhou 已提交
381
      auto x_exps_mat = framework::EigenMatrix<T>::From(emission_exps);
C
caoying03 已提交
382

383 384
      // TODO(caoying): Fix this to avoid using this local variable if we can
      // profile the training process.
C
caoying03 已提交
385
      Tensor tmp;
386
      tmp.mutable_data<T>(beta->dims(), platform::CPUPlace());
W
wuhuanzhou 已提交
387
      auto tmp_mat = framework::EigenMatrix<T>::From(tmp);
C
caoying03 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
      auto prob = beta_mat * x_exps_mat;
      auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
                         .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
                         .broadcast(Eigen::DSizes<int, 2>(1, tag_num));
      tmp_mat.device(*place) = prob / row_sum;

      for (size_t k = 1; k < seq_length; ++k) {
        T sum = 0.;
        for (size_t i = 0; i < tag_num; ++i) {
          for (size_t j = 0; j < tag_num; ++j) {
            sum += w_exps[(i + state_trans_base_idx) * tag_num + j] *  // (**)
                   alpha_mat(k - 1, i) * tmp_mat(k, j);
          }
        }
        sum = 1. / sum;
        for (size_t i = 0; i < tag_num; ++i) {
          for (size_t j = 0; j < tag_num; ++j) {
            trans_grad[(i + state_trans_base_idx) * tag_num + j] +=
                sum * w_exps[(i + state_trans_base_idx) * tag_num + j] *
407
                alpha_mat(k - 1, i) * tmp_mat(k, j) * ll_grad;
C
caoying03 已提交
408 409 410
          }
        }
        trans_grad[(label_value[k - 1] + state_trans_base_idx) * tag_num +
411
                   label_value[k]] -= static_cast<T>(ll_grad);
C
caoying03 已提交
412 413
      }
    }
C
caoying03 已提交
414
  }
C
caoying03 已提交
415 416 417 418
};

}  // namespace operators
}  // namespace paddle