test_inverse_op.py 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle
from op_test import OpTest


class TestInverseOp(OpTest):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"

    def setUp(self):
        self.op_type = "inverse"
        self.config()

        np.random.seed(123)
        mat = np.random.random(self.matrix_shape).astype(self.dtype)
        inverse = np.linalg.inv(mat)

        self.inputs = {'Input': mat}
        self.outputs = {'Output': inverse}

    def test_check_output(self):
        self.check_output()

    def test_grad(self):
        self.check_grad(['Input'], 'Output')


class TestInverseOpBatched(TestInverseOp):
    def config(self):
        self.matrix_shape = [8, 4, 4]
        self.dtype = "float64"


class TestInverseOpLarge(TestInverseOp):
    def config(self):
        self.matrix_shape = [32, 32]
        self.dtype = "float64"

    def test_grad(self):
        self.check_grad(['Input'], 'Output', max_relative_error=1e-6)


class TestInverseOpFP32(TestInverseOp):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float32"

    def test_grad(self):
        self.check_grad(['Input'], 'Output', max_relative_error=1e-2)


class TestInverseOpBatchedFP32(TestInverseOpFP32):
    def config(self):
        self.matrix_shape = [8, 4, 4]
        self.dtype = "float32"


class TestInverseOpLargeFP32(TestInverseOpFP32):
    def config(self):
        self.matrix_shape = [32, 32]
        self.dtype = "float32"


class TestInverseAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place, with_out=False):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[4, 4], dtype="float64")
            if with_out:
                out = fluid.data(name="output", shape=[4, 4], dtype="float64")
            else:
                out = None
            result = paddle.inverse(input=input, out=out)

            input_np = np.random.random([4, 4]).astype("float64")
            result_np = np.linalg.inv(input_np)

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], np.linalg.inv(input_np)))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([4, 4]).astype("float64")
                input = fluid.dygraph.to_variable(input_np)
                result = paddle.inverse(input)
                self.assertTrue(
                    np.allclose(result.numpy(), np.linalg.inv(input_np)))


class TestInverseAPIError(unittest.TestCase):
    def test_errors(self):
        input_np = np.random.random([4, 4]).astype("float64")

        # input must be Variable.
        self.assertRaises(TypeError, paddle.inverse, input_np)

        # The data type of input must be float32 or float64.
        for dtype in ["bool", "int32", "int64", "float16"]:
            input = fluid.data(name='input_' + dtype, shape=[4, 4], dtype=dtype)
            self.assertRaises(TypeError, paddle.inverse, input)

        # When out is set, the data type must be the same as input.
        input = fluid.data(name='input_1', shape=[4, 4], dtype="float32")
        out = fluid.data(name='output', shape=[4, 4], dtype="float64")
        self.assertRaises(TypeError, paddle.inverse, input, out)

        # The number of dimensions of input must be >= 2.
        input = fluid.data(name='input_2', shape=[4], dtype="float32")
        self.assertRaises(ValueError, paddle.inverse, input)


if __name__ == "__main__":
    unittest.main()