test_psroi_pool_op.py 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import paddle
18 19 20 21 22 23
import math
import numpy as np
import unittest
from op_test import OpTest


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
def calc_psroi_pool(x, rois, rois_num_per_img, output_channels, spatial_scale,
                    pooled_height, pooled_width):
    """
    Psroi_pool implemented by Numpy.
    x: 4-D as (N, C, H, W),
    rois: 2-D as [[x1, y1, x2, y2], ...],
    rois_num_per_img: 1-D as [nums_of_batch_0, nums_of_batch_1,  ...]
    """
    output_shape = (len(rois), output_channels, pooled_height, pooled_width)
    out_data = np.zeros(output_shape)
    batch_id = 0
    rois_num_id = 0
    rois_num_left = rois_num_per_img[rois_num_id]
    for i in range(len(rois)):
        roi = rois[i]
        roi_batch_id = batch_id
        rois_num_left -= 1
        if rois_num_left == 0:
            rois_num_id += 1
            if rois_num_id < len(rois_num_per_img):
                rois_num_left = rois_num_per_img[rois_num_id]
            batch_id += 1
        roi_start_w = round(roi[0]) * spatial_scale
        roi_start_h = round(roi[1]) * spatial_scale
        roi_end_w = (round(roi[2]) + 1.) * spatial_scale
        roi_end_h = (round(roi[3]) + 1.) * spatial_scale

        roi_height = max(roi_end_h - roi_start_h, 0.1)
        roi_width = max(roi_end_w - roi_start_w, 0.1)

        bin_size_h = roi_height / float(pooled_height)
        bin_size_w = roi_width / float(pooled_width)

        x_i = x[roi_batch_id]

        for c in range(output_channels):
            for ph in range(pooled_height):
                for pw in range(pooled_width):
                    hstart = int(
                        math.floor(float(ph) * bin_size_h + roi_start_h))
                    wstart = int(
                        math.floor(float(pw) * bin_size_w + roi_start_w))
                    hend = int(
                        math.ceil(float(ph + 1) * bin_size_h + roi_start_h))
                    wend = int(
                        math.ceil(float(pw + 1) * bin_size_w + roi_start_w))
                    hstart = min(max(hstart, 0), x.shape[2])
                    hend = min(max(hend, 0), x.shape[2])
                    wstart = min(max(wstart, 0), x.shape[3])
                    wend = min(max(wend, 0), x.shape[3])

                    c_in = (c * pooled_height + ph) * pooled_width + pw
                    is_empty = (hend <= hstart) or (wend <= wstart)
                    out_sum = 0.
                    for ih in range(hstart, hend):
                        for iw in range(wstart, wend):
                            out_sum += x_i[c_in, ih, iw]
                    bin_area = (hend - hstart) * (wend - wstart)
82 83 84
                    out_data[i, c, ph,
                             pw] = 0. if is_empty else (out_sum /
                                                        float(bin_area))
85 86 87
    return out_data


88
class TestPSROIPoolOp(OpTest):
89

90
    def set_data(self):
91
        paddle.enable_static()
92 93
        self.init_test_case()
        self.make_rois()
94 95 96 97 98 99
        self.outs = calc_psroi_pool(self.x, self.boxes, self.boxes_num,
                                    self.output_channels, self.spatial_scale,
                                    self.pooled_height,
                                    self.pooled_width).astype('float64')
        self.inputs = {
            'X': self.x,
Z
zyfncg 已提交
100 101
            'ROIs': (self.rois_with_batch_id[:, 1:5], self.rois_lod),
            'RoisNum': self.boxes_num
102
        }
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        self.attrs = {
            'output_channels': self.output_channels,
            'spatial_scale': self.spatial_scale,
            'pooled_height': self.pooled_height,
            'pooled_width': self.pooled_width
        }
        self.outputs = {'Out': self.outs}

    def init_test_case(self):
        self.batch_size = 3
        self.channels = 3 * 2 * 2
        self.height = 6
        self.width = 4

        self.x_dim = [self.batch_size, self.channels, self.height, self.width]

        self.spatial_scale = 1.0 / 4.0
        self.output_channels = 3
        self.pooled_height = 2
        self.pooled_width = 2

124
        self.x = np.random.random(self.x_dim).astype('float64')
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

    def make_rois(self):
        rois = []
        self.rois_lod = [[]]
        for bno in range(self.batch_size):
            self.rois_lod[0].append(bno + 1)
            for i in range(bno + 1):
                x1 = np.random.random_integers(
                    0, self.width // self.spatial_scale - self.pooled_width)
                y1 = np.random.random_integers(
                    0, self.height // self.spatial_scale - self.pooled_height)

                x2 = np.random.random_integers(x1 + self.pooled_width,
                                               self.width // self.spatial_scale)
                y2 = np.random.random_integers(
                    y1 + self.pooled_height, self.height // self.spatial_scale)
                roi = [bno, x1, y1, x2, y2]
                rois.append(roi)
        self.rois_num = len(rois)
144 145
        self.rois_with_batch_id = np.array(rois).astype('float64')
        self.boxes = self.rois_with_batch_id[:, 1:]
146 147
        self.boxes_num = np.array([bno + 1 for bno in range(self.batch_size)
                                   ]).astype('int32')
148 149 150

    def setUp(self):
        self.op_type = 'psroi_pool'
151 152
        self.python_api = lambda x, boxes, boxes_num, pooled_height, pooled_width, output_channels, spatial_scale: paddle.vision.ops.psroi_pool(
            x, boxes, boxes_num, (pooled_height, pooled_width), spatial_scale)
153 154 155
        self.set_data()

    def test_check_output(self):
Z
zyfncg 已提交
156
        self.check_output(check_eager=True)
157 158

    def test_check_grad(self):
Z
zyfncg 已提交
159
        self.check_grad(['X'], 'Out', check_eager=True)
160 161


162
class TestPSROIPoolDynamicFunctionAPI(unittest.TestCase):
163

164 165
    def setUp(self):
        self.x = np.random.random([2, 490, 28, 28]).astype(np.float32)
166 167
        self.boxes = np.array([[1, 5, 8, 10], [4, 2, 6, 7],
                               [12, 12, 19, 21]]).astype(np.float32)
168 169 170
        self.boxes_num = np.array([1, 2]).astype(np.int32)

    def test_output_size(self):
171

172 173
        def test_output_size_is_int():
            output_size = 7
174 175 176 177
            out = paddle.vision.ops.psroi_pool(paddle.to_tensor(self.x),
                                               paddle.to_tensor(self.boxes),
                                               paddle.to_tensor(self.boxes_num),
                                               output_size).numpy()
178 179 180 181 182 183
            expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 10,
                                         1.0, 7, 7)
            self.assertTrue(np.allclose(out, expect_out))

        def test_output_size_is_tuple():
            output_size = (7, 7)
184 185 186 187
            out = paddle.vision.ops.psroi_pool(paddle.to_tensor(self.x),
                                               paddle.to_tensor(self.boxes),
                                               paddle.to_tensor(self.boxes_num),
                                               output_size).numpy()
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
            expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 10,
                                         1.0, 7, 7)
            self.assertTrue(np.allclose(out, expect_out))

        def test_dytype_is_float64():
            output_size = (7, 7)
            out = paddle.vision.ops.psroi_pool(
                paddle.to_tensor(self.x, 'float64'),
                paddle.to_tensor(self.boxes, 'float64'),
                paddle.to_tensor(self.boxes_num, 'int32'), output_size).numpy()
            expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 10,
                                         1.0, 7, 7)
            self.assertTrue(np.allclose(out, expect_out))

        places = ['cpu']
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append('gpu')
        for place in places:
            paddle.set_device(place)
            test_output_size_is_int()
            test_output_size_is_tuple()
            test_dytype_is_float64()


class TestPSROIPoolDynamicClassAPI(unittest.TestCase):
213

214 215 216 217 218 219 220
    def setUp(self):
        self.x = np.random.random([2, 128, 32, 32]).astype(np.float32)
        self.boxes = np.array([[3, 5, 6, 13], [7, 4, 22, 18], [4, 5, 7, 10],
                               [5, 3, 25, 21]]).astype(np.float32)
        self.boxes_num = np.array([2, 2]).astype(np.int32)

    def test_output_size(self):
221

222 223
        def test_output_size_is_int():
            psroi_module = paddle.vision.ops.PSRoIPool(8, 1.1)
224 225 226
            out = psroi_module(paddle.to_tensor(self.x),
                               paddle.to_tensor(self.boxes),
                               paddle.to_tensor(self.boxes_num)).numpy()
227 228 229 230 231 232
            expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 2,
                                         1.1, 8, 8)
            self.assertTrue(np.allclose(out, expect_out))

        def test_output_size_is_tuple():
            psroi_pool_module = paddle.vision.ops.PSRoIPool(8, 1.1)
233 234 235
            out = psroi_pool_module(paddle.to_tensor(self.x),
                                    paddle.to_tensor(self.boxes),
                                    paddle.to_tensor(self.boxes_num)).numpy()
236 237 238 239 240 241
            expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 2,
                                         1.1, 8, 8)
            self.assertTrue(np.allclose(out, expect_out))

        def test_dytype_is_float64():
            psroi_pool_module = paddle.vision.ops.PSRoIPool(8, 1.1)
242 243 244 245
            out = psroi_pool_module(paddle.to_tensor(self.x, 'float64'),
                                    paddle.to_tensor(self.boxes, 'float64'),
                                    paddle.to_tensor(self.boxes_num,
                                                     'int32')).numpy()
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
            expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 2,
                                         1.1, 8, 8)
            self.assertTrue(np.allclose(out, expect_out))

        paddle.disable_static()
        places = ['cpu']
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append('gpu')
        for place in places:
            paddle.set_device(place)
            test_output_size_is_int()
            test_output_size_is_tuple()
            test_dytype_is_float64()


class TestPSROIPoolBoxesNumError(unittest.TestCase):
262

263 264 265 266 267 268 269
    def setUp(self):
        paddle.disable_static()
        self.x = paddle.uniform([2, 490, 28, 28], dtype='float32')
        self.boxes = paddle.to_tensor(
            [[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], 'float32')

    def test_errors(self):
270

271 272
        def test_boxes_num_nums_error():
            boxes_num = paddle.to_tensor([1, 5], 'int32')
273 274 275 276
            out = paddle.vision.ops.psroi_pool(self.x,
                                               self.boxes,
                                               boxes_num,
                                               output_size=7)
277 278 279 280 281

        self.assertRaises(ValueError, test_boxes_num_nums_error)

        def test_boxes_num_length_error():
            boxes_num = paddle.to_tensor([1, 1, 1], 'int32')
282 283 284 285
            out = paddle.vision.ops.psroi_pool(self.x,
                                               self.boxes,
                                               boxes_num,
                                               output_size=7)
286 287 288 289 290

        self.assertRaises(ValueError, test_boxes_num_length_error)


class TestPSROIPoolChannelError(unittest.TestCase):
291

292 293 294 295 296 297 298 299
    def setUp(self):
        paddle.disable_static()
        self.x = paddle.uniform([2, 490, 28, 28], dtype='float32')
        self.boxes = paddle.to_tensor(
            [[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], 'float32')
        self.output_size = 4

    def test_errors(self):
300

301 302 303 304 305 306 307 308 309
        def test_channel_error():
            boxes_num = paddle.to_tensor([2, 1], 'int32')
            out = paddle.vision.ops.psroi_pool(self.x, self.boxes, boxes_num,
                                               self.output_size)

        self.assertRaises(ValueError, test_channel_error)


class TestPSROIPoolStaticAPI(unittest.TestCase):
310

311 312
    def setUp(self):
        paddle.enable_static()
313 314
        self.x_placeholder = paddle.static.data(name='x',
                                                shape=[2, 490, 28, 28])
315
        self.x = np.random.random([2, 490, 28, 28]).astype(np.float32)
316 317 318 319 320
        self.boxes_placeholder = paddle.static.data(name='boxes',
                                                    shape=[3, 4],
                                                    lod_level=1)
        self.boxes = np.array([[1, 5, 8, 10], [4, 2, 6, 7],
                               [12, 12, 19, 21]]).astype(np.float32)
321 322 323 324 325 326 327 328 329 330 331 332 333 334
        self.boxes_num = np.array([1, 2]).astype(np.int32)

    def test_function_in_static(self):
        output_size = 7
        out = paddle.vision.ops.psroi_pool(self.x_placeholder,
                                           self.boxes_placeholder,
                                           self.boxes_num, output_size)
        expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 10,
                                     1.0, 7, 7)
        places = [paddle.CPUPlace()]
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
        for place in places:
            exe = paddle.static.Executor(place)
335 336
            boxes_lod_data = paddle.fluid.create_lod_tensor(
                self.boxes, [[1, 2]], place)
337
            out_res = exe.run(paddle.static.default_main_program(),
338 339 340 341
                              feed={
                                  'x': self.x,
                                  'boxes': boxes_lod_data
                              },
342 343 344 345
                              fetch_list=[out.name])
            self.assertTrue(np.allclose(out_res, expect_out))


346 347
if __name__ == '__main__':
    unittest.main()