test_einsum.py 16.5 KB
Newer Older
T
Tongxin Bai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import contextlib
import unittest
import paddle
from paddle.fluid import core

21
import os
22

23 24
os.environ['FLAGS_new_einsum'] = "0"

T
Tongxin Bai 已提交
25 26

class TestErrors(unittest.TestCase):
27

T
Tongxin Bai 已提交
28 29 30 31 32 33
    def setUp(self):
        pass

    def test_diagonalize_errors(self):
        a = np.arange(4 * 3 * 4 * 4).reshape(4, 3, 4, 4).astype('float')
        a = paddle.to_tensor(a)
34 35
        with self.assertRaisesRegex(AssertionError,
                                    ('Duplicate labels are not supported.')):
T
Tongxin Bai 已提交
36
            paddle.einsum('...ii->...i', a)
37 38
        with self.assertRaisesRegex(AssertionError,
                                    ('Duplicate labels are not supported.')):
T
Tongxin Bai 已提交
39
            paddle.einsum('i...i', a)
40 41
        with self.assertRaisesRegex(AssertionError,
                                    ('Duplicate labels are not supported.')):
T
Tongxin Bai 已提交
42 43 44 45 46 47 48 49
            paddle.einsum('i...i->i...', a)

    def test_param_errors(self):
        a = np.arange(4 * 3 * 4 * 4).reshape(4, 3, 4, 4).astype('float')
        a = paddle.to_tensor(a)
        with self.assertRaisesRegex(AssertionError,
                                    ('At least one operand is expected.')):
            paddle.einsum('ijk')
50 51 52
        with self.assertRaisesRegex(
                AssertionError,
            ('Invalid equation: multiple `->` were found.')):
T
Tongxin Bai 已提交
53
            paddle.einsum('i -> j -> k', a)
54 55 56 57
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the number of operands is 2, "
             "but found 3 segments in the label equation.")):
T
Tongxin Bai 已提交
58
            paddle.einsum('i,j,k', a, a)
59 60 61 62
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the number of operands is 2, "
             "but found 1 segments in the label equation.")):
T
Tongxin Bai 已提交
63
            paddle.einsum('ij -> k', a, a)
64 65 66 67
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the number of operands is 1, "
             "but found 2 segments in the label equation.")):
T
Tongxin Bai 已提交
68
            paddle.einsum('i, -> k', a)
69 70 71
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the label string '' misses dimensions.")):
T
Tongxin Bai 已提交
72
            paddle.einsum('->', a)
73 74 75
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the label string 'i' misses dimensions.")):
T
Tongxin Bai 已提交
76
            paddle.einsum('i', a)
77 78 79
        with self.assertRaisesRegex(
                AssertionError, ("Invalid equation: _ is not a valid label, "
                                 "which should be letters.")):
T
Tongxin Bai 已提交
80
            paddle.einsum('i_', a)
81 82 83
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: `.` is found outside of an ellipsis.")):
T
Tongxin Bai 已提交
84
            paddle.einsum('i..j', a)
85 86 87
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: `.` is found outside of an ellipsis.")):
T
Tongxin Bai 已提交
88
            paddle.einsum('...k...', a)
89 90 91
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: missing ellipsis in output labels.")):
T
Tongxin Bai 已提交
92
            paddle.einsum('i...->i', a)
93 94 95
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: duplicate output labels are found.")):
T
Tongxin Bai 已提交
96
            paddle.einsum('i...->i...i', a)
97 98 99 100
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid operands: label i "
             "corresponds to non-broadcastable dimensions.")):
T
Tongxin Bai 已提交
101 102 103 104
            paddle.einsum('ij...,ji...', a, a)


class TestEinsum(unittest.TestCase):
105

T
Tongxin Bai 已提交
106 107 108 109 110
    @classmethod
    def setUpClass(cls):
        np.random.seed(12345)

        cls.TEST_SAMPLES = {
111 112
            "a": np.random.rand(1, 1),
            "b": np.random.rand(1),
T
Tongxin Bai 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
            "x": np.random.rand(5),
            "y": np.random.rand(7),
            "A": np.random.rand(4, 5),
            "B": np.random.rand(2, 5),
            "C": np.random.rand(3, 7),
            "D": np.random.rand(3, 4, 5),
            "E": np.random.rand(3, 5, 2),
            "F": np.random.rand(2, 4, 5, 3),
            "G": np.random.rand(4, 2, 5),
            "H": np.random.rand(3, 2, 4),
            "I": np.random.rand(2, 2),
            "J": np.random.rand(1, 3, 5),
            "K": np.random.rand(1, 2, 3, 4),
        }

    def _get_place(self, force_to_use_cpu=False):
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    def check_output_equal(self, actual, expect, rtol=1.e-5, atol=1.e-8):
        error_msg = 'Output has diff at place:{}. \nExpect: {} \nBut Got: {} in class {}'
        self.assertTrue(
139
            np.allclose(actual, expect, rtol=rtol, atol=atol),
T
Tongxin Bai 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
            error_msg.format(paddle.get_device(), expect, actual,
                             self.__class__.__name__))

    def setUp(self):
        self.sample = {"paradigm": "i->", "data": ["x"]}

    def test_forward(self):
        operands = [
            TestEinsum.TEST_SAMPLES[operand] for operand in self.sample["data"]
        ]
        expected_result = np.einsum(self.sample["paradigm"], *operands)
        equation = self.sample["paradigm"]

        with paddle.fluid.dygraph.guard(
                self._get_place(force_to_use_cpu=False)):
            pd_operands = [paddle.to_tensor(operand) for operand in operands]
            result = paddle.einsum(equation, *pd_operands)
            self.check_output_equal(result.numpy(), expected_result)

        with paddle.fluid.dygraph.guard(self._get_place(force_to_use_cpu=True)):
            pd_operands = [paddle.to_tensor(operand) for operand in operands]
            result = paddle.einsum(equation, *pd_operands)
            self.check_output_equal(result.numpy(), expected_result)


class TestEinsumVectorDot(TestEinsum):
166

T
Tongxin Bai 已提交
167 168 169 170 171
    def setUp(self):
        self.sample = {"paradigm": "i,i->", "data": ["x", "x"]}


class TestEinsumVectorMul(TestEinsum):
172

T
Tongxin Bai 已提交
173 174 175 176 177
    def setUp(self):
        self.sample = {"paradigm": "i,i->i", "data": ["x", "x"]}


class TestEinsumVectorOuter(TestEinsum):
178

T
Tongxin Bai 已提交
179 180 181 182 183
    def setUp(self):
        self.sample = {"paradigm": "i,j->ij", "data": ["x", "y"]}


class TestEinsumMatrixTranspose(TestEinsum):
184

T
Tongxin Bai 已提交
185 186 187 188 189
    def setUp(self):
        self.sample = {"paradigm": "ij->ji", "data": ["A"]}


class TestEinsumMatrixRowSum(TestEinsum):
190

T
Tongxin Bai 已提交
191 192 193 194 195
    def setUp(self):
        self.sample = {"paradigm": "ij->j", "data": ["A"]}


class TestEinsumMatrixColSum(TestEinsum):
196

T
Tongxin Bai 已提交
197 198 199 200 201
    def setUp(self):
        self.sample = {"paradigm": "ij->i", "data": ["A"]}


class TestEinsumMatrixEleMul(TestEinsum):
202

T
Tongxin Bai 已提交
203 204 205 206
    def setUp(self):
        self.sample = {"paradigm": "ij,ij->ij", "data": ["A", "A"]}


207
class TestEinsumDegenerateMatrixVecMul(TestEinsum):
208

209 210 211 212
    def setUp(self):
        self.sample = {"paradigm": "ij,j", "data": ["a", "b"]}


T
Tongxin Bai 已提交
213
class TestEinsumMatrixVecMul(TestEinsum):
214

T
Tongxin Bai 已提交
215 216 217 218 219
    def setUp(self):
        self.sample = {"paradigm": "ij,j->i", "data": ["A", "x"]}


class TestEinsumMatrixMul(TestEinsum):
220

T
Tongxin Bai 已提交
221 222 223 224 225
    def setUp(self):
        self.sample = {"paradigm": "ij,kj->ik", "data": ["A", "B"]}


class TestEinsumMatrixOuter(TestEinsum):
226

T
Tongxin Bai 已提交
227 228 229 230 231
    def setUp(self):
        self.sample = {"paradigm": "ij,kl->ijkl", "data": ["A", "C"]}


class TestEinsumTensorBMM(TestEinsum):
232

T
Tongxin Bai 已提交
233 234 235 236 237
    def setUp(self):
        self.sample = {"paradigm": "bij,bjk->bik", "data": ["D", "E"]}


class TestEinsumTensorContract1(TestEinsum):
238

T
Tongxin Bai 已提交
239 240 241 242 243
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->i", "data": ["D", "A"]}


class TestEinsumTensorContract2(TestEinsum):
244

T
Tongxin Bai 已提交
245 246 247 248 249
    def setUp(self):
        self.sample = {"paradigm": "ijk,lk->ijl", "data": ["D", "B"]}


class TestEinsumTensorContract3(TestEinsum):
250

T
Tongxin Bai 已提交
251 252 253 254 255
    def setUp(self):
        self.sample = {"paradigm": "abcd,dfg->abcfg", "data": ["F", "D"]}


class TestEinsumTensorContract4(TestEinsum):
256

T
Tongxin Bai 已提交
257 258 259 260 261
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->ik", "data": ["D", "A"]}


class TestEinsumTensorContract5(TestEinsum):
262

T
Tongxin Bai 已提交
263 264 265 266 267
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->ij", "data": ["D", "A"]}


class TestEinsumTensorContract6(TestEinsum):
268

T
Tongxin Bai 已提交
269 270 271 272 273
    def setUp(self):
        self.sample = {"paradigm": "ik, ijk->j", "data": ["A", "G"]}


class TestEinsumTensorContract7(TestEinsum):
274

T
Tongxin Bai 已提交
275 276 277 278 279
    def setUp(self):
        self.sample = {"paradigm": "ijk, ik->jk", "data": ["G", "A"]}


class TestEinsumEllipsis1(TestEinsum):
280

T
Tongxin Bai 已提交
281 282 283 284 285
    def setUp(self):
        self.sample = {"paradigm": "i...->...", "data": ["G"]}


class TestEinsumEllipsis2(TestEinsum):
286

T
Tongxin Bai 已提交
287 288 289 290 291
    def setUp(self):
        self.sample = {"paradigm": "ij,...i->j...", "data": ["A", "H"]}


class TestEinsumEllipsis3(TestEinsum):
292

T
Tongxin Bai 已提交
293 294 295 296 297
    def setUp(self):
        self.sample = {"paradigm": "k...,jk", "data": ["F", "I"]}


class TestEinsumTestEinsumBilinear(TestEinsum):
298

T
Tongxin Bai 已提交
299 300 301 302 303
    def setUp(self):
        self.sample = {"paradigm": "bn,anm,bm->ba", "data": ["B", "E", "I"]}


class TestEinsumTestEinsumOthers1(TestEinsum):
304

T
Tongxin Bai 已提交
305 306 307 308 309
    def setUp(self):
        self.sample = {"paradigm": "ijkl, lmn->kmn", "data": ["F", "H"]}


class TestEinsumTestEinsumOthers2(TestEinsum):
310

T
Tongxin Bai 已提交
311 312 313 314 315
    def setUp(self):
        self.sample = {"paradigm": "ijkl, lmn->ijn", "data": ["F", "H"]}


class TestEinsumBatch1(TestEinsum):
316

T
Tongxin Bai 已提交
317 318 319 320 321
    def setUp(self):
        self.sample = {"paradigm": "blq,bhlk->bhlqk", "data": ["J", "K"]}


class TestNumpyTests(unittest.TestCase):
322

T
Tongxin Bai 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336
    def setUp(self):
        pass

    def _get_place(self, force_to_use_cpu=False):
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    def check_output_equal(self, actual, expect, rtol=1.e-5, atol=1.e-8):
        error_msg = 'Output has diff at place:{}. \nExpect: {} \nBut Got: {} in class {}'
        self.assertTrue(
337
            np.allclose(actual, expect, rtol=rtol, atol=atol),
T
Tongxin Bai 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
            error_msg.format(paddle.get_device(), expect, actual,
                             self.__class__.__name__))

    def check_output(self, eqn, *ops):
        expect = np.einsum(eqn, *ops)
        with paddle.fluid.dygraph.guard(
                self._get_place(force_to_use_cpu=False)):
            pd_operands = [paddle.to_tensor(op) for op in ops]
            actual = paddle.einsum(eqn, *pd_operands)
            self.check_output_equal(actual.numpy(), expect)

    def test_sums(self):
        for n in range(1, 17):
            a = np.arange(n).astype('float')
            self.check_output("i->", a)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("...i->...", a)

        for n in range(1, 17):
            a = np.arange(2 * n).reshape(2, n).astype('float')
            self.check_output("i...->...", a)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("i...->...", a)

        for n in range(1, 17):
            a = np.arange(3 * n).reshape(3, n).astype('float')
            b = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("..., ...", a, b)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("...i, ...i", a, b)

        for n in range(1, 11):
            a = np.arange(n * 3 * 2).reshape(n, 3, 2).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("i..., i...", a, b)

        for n in range(1, 17):
            a = (np.arange(3) + 1).astype('float')
            b = (np.arange(n) + 1).astype('float')
            self.check_output("i,j", a, b)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("ij, j", a, b)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("ji,j", a.T, b.T)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n * 6).reshape(n, 6).astype('float')
            self.check_output("ij,jk", a, b)

        a = np.arange(12).reshape(3, 4).astype('float')
        b = np.arange(20).reshape(4, 5).astype('float')
        c = np.arange(30).reshape(5, 6).astype('float')
        self.check_output("ij,jk,kl", a, b, c)

        a = np.arange(60).reshape(3, 4, 5).astype('float')
        b = np.arange(24).reshape(4, 3, 2).astype('float')
        self.check_output("ijk, jil -> kl", a, b)

        for n in range(1, 25):
            a = np.arange(n).astype('float')
            self.check_output("...,...", a, a)
            self.check_output("i,i", a, a)

        p = np.ones((10, 2)).astype('float')
        q = np.ones((1, 2)).astype('float')
        self.check_output('ij,ij->j', p, q)

        x = np.array([2., 3.]).astype('float')
        y = np.array([4.]).astype('float')
        self.check_output("i, i", x, y)

        p = np.ones((1, 5)) / 2
        q = np.ones((5, 5)) / 2
        self.check_output("...ij,...jk->...ik", p, p)
        self.check_output("...ij,...jk->...ik", p, q)

        x = np.eye(2).astype('float')
        y = np.ones(2).astype('float')
        self.check_output("ji,i->", x, y)
        self.check_output("i,ij->", y, x)
        self.check_output("ij,i->", x, y)

    def test_large_nops(self):
        a = np.arange(4 * 3 * 1 * 4).reshape(4, 3, 1, 4).astype('float')
        self.check_output('a...b,b...c,c...d', a, a, a)
        self.check_output('a...b,b...c,c...a', a, a, a)
        self.check_output('a...b,b...c,c...a', a, a, a)
        self.check_output('...ab,...ba,...ab,...ab', a, a, a, a)

441 442 443 444 445 446 447 448 449 450
    def test_static_graph(self):
        paddle.enable_static()
        fluid = paddle.fluid
        if fluid.core.is_compiled_with_cuda():
            self.place = fluid.CUDAPlace(0)
        else:
            self.place = fluid.CPUPlace()
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
            a = paddle.static.data(name='a',
                                   shape=[3, None, None, None],
                                   dtype='float')
            b = paddle.static.data(name='b',
                                   shape=[2, None, None, None],
                                   dtype='float')
            c = paddle.static.data(name='c',
                                   shape=[None, None, 2, None],
                                   dtype='float')
            d = paddle.static.data(name='d',
                                   shape=[None, None, 5],
                                   dtype='float')
            e = paddle.static.data(name='e',
                                   shape=[None, 2, None],
                                   dtype='float')
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

            outs = []
            outs.append(paddle.einsum("ibnd,jbnd->bnij", a, b))
            outs.append(paddle.einsum('...ik, ...j', c, d))
            outs.append(paddle.einsum('...kj, ...ik', d, e))
            outs.append(paddle.einsum('ijk..., ikj', c, e))
            outs.append(paddle.einsum('ijk..., ikj->...ij', c, e))
        exe = fluid.Executor(self.place)
        exe.run(startup)
        a = np.arange(72).reshape(3, 2, 3, 4).astype('float')
        b = np.arange(48).reshape(2, 2, 3, 4).astype('float')
        c = np.arange(48).reshape(2, 3, 2, 4).astype('float')
        d = np.arange(30).reshape(2, 3, 5).astype('float')
        e = np.arange(12).reshape(2, 2, 3).astype('float')
        feeds = {'a': a, 'b': b, 'c': c, 'd': d, 'e': e}
        actual = exe.run(main, feed=feeds, fetch_list=[outs])
        expect = []
        expect.append(np.einsum("ibnd,jbnd->bnij", a, b))
        expect.append(np.einsum('...ik, ...j', c, d))
        expect.append(np.einsum('...kj, ...ik', d, e))
        expect.append(np.einsum('ijk..., ikj', c, e))
        expect.append(np.einsum('ijk..., ikj->...ij', c, e))
        for a, e in zip(actual, expect):
            self.check_output_equal(a, e)

T
Tongxin Bai 已提交
491 492 493

if __name__ == "__main__":
    unittest.main()