dist_kernel_impl.h 5.3 KB
Newer Older
Z
Zhong Hui 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <math.h>
#include <algorithm>
#include <vector>
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename T,
          size_t D,
          int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using ETensor = phi::EigenTensor<T, D, MajorType, IndexType>;

template <int Rank>
static void GetBraodcastDims(const phi::DDim& x_dims,
                             const phi::DDim& y_dims,
                             Eigen::DSizes<int, Rank>* x_bcast_dims,
                             Eigen::DSizes<int, Rank>* y_bcast_dims) {
  int bcast_dims_remainder = 0;
  for (int i = 0; i < x_dims.size(); ++i) {
    if (x_dims[i] >= y_dims[i]) {
      (*x_bcast_dims)[i] = 1;
      (*y_bcast_dims)[i] = x_dims[i] / y_dims[i];
      bcast_dims_remainder += x_dims[i] % y_dims[i];
    } else {
      (*y_bcast_dims)[i] = 1;
      (*x_bcast_dims)[i] = y_dims[i] / x_dims[i];
      bcast_dims_remainder += y_dims[i] % x_dims[i];
    }
  }
  PADDLE_ENFORCE_EQ(bcast_dims_remainder,
                    0,
                    phi::errors::PreconditionNotMet(
                        "The input tensor of Op(dist) could not be broadcast, "
                        "X's shape is [%s], Y's shape is [%s].",
                        x_dims,
                        y_dims));
}

static phi::DDim GetNewDims(const phi::DDim& in_dims, int rank) {
  std::vector<int64_t> new_dims_vec(rank);
  if (in_dims.size() < rank) {
    for (int i = 0; i < rank - in_dims.size(); ++i) {
      new_dims_vec[i] = 1;
    }
    for (int i = 0; i < in_dims.size(); ++i) {
      new_dims_vec[i + rank - in_dims.size()] = in_dims[i];
    }
  } else {
    new_dims_vec = vectorize(in_dims);
  }
  return phi::make_ddim(new_dims_vec);
}

template <typename Context, typename T, int Rank>
static void DistFunction(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& y,
                         float p,
                         DenseTensor* out) {
  if (out) {
    dev_ctx.template Alloc<T>(out);
  }
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  // new dims with same size as rank, e.g. (rank=3, (4, 3) => (1, 4, 3))
  phi::DDim x_new_dims = GetNewDims(x_dims, Rank);
  phi::DDim y_new_dims = GetNewDims(y_dims, Rank);

  auto x_t = ETensor<T, Rank>::From(x, x_new_dims);
  auto y_t = ETensor<T, Rank>::From(y, y_new_dims);
  auto out_t = ETensor<T, 1>::From(*out);
  auto& place = *dev_ctx.eigen_device();

  Eigen::DSizes<int, Rank> x_bcast_dims;
  Eigen::DSizes<int, Rank> y_bcast_dims;
  GetBraodcastDims<Rank>(x_new_dims, y_new_dims, &x_bcast_dims, &y_bcast_dims);
  // p=0 means number of non-zero elements of (x-y)
  // p=inf means the maximum of |x-y|
  // p=-inf means the minimum of |x-y|
  // otherwise, Lp-norm = pow(sum(pow(|x-y|, p)), 1/p)
  if (p == 0) {
    out_t.device(place) =
        (x_t.broadcast(x_bcast_dims) != y_t.broadcast(y_bcast_dims))
            .template cast<T>()
            .sum();
  } else if (p == INFINITY) {
    out_t.device(place) =
        (x_t.broadcast(x_bcast_dims) - y_t.broadcast(y_bcast_dims))
            .abs()
            .maximum();
  } else if (p == -INFINITY) {
    out_t.device(place) =
        (x_t.broadcast(x_bcast_dims) - y_t.broadcast(y_bcast_dims))
            .abs()
            .minimum();
  } else {
    out_t.device(place) =
        (x_t.broadcast(x_bcast_dims) - y_t.broadcast(y_bcast_dims))
            .abs()
            .pow(p)
            .sum()
            .pow(1.0 / p);
  }
}

template <typename T, typename Context>
void DistKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y,
                float p,
                DenseTensor* out) {
  auto x_rank = x.dims().size();
  auto y_rank = y.dims().size();
  auto rank = std::max(x_rank, y_rank);
  PADDLE_ENFORCE_LE(rank,
                    6,
                    phi::errors::Unimplemented(
                        "Op(dist) only support tensors with no more than 6 "
                        "dimensions, but X's rank is %d, Y's rank is %d.",
                        x_rank,
                        y_rank));
  switch (rank) {
    case 1:
      DistFunction<Context, T, 1>(dev_ctx, x, y, p, out);
      break;
    case 2:
      DistFunction<Context, T, 2>(dev_ctx, x, y, p, out);
      break;
    case 3:
      DistFunction<Context, T, 3>(dev_ctx, x, y, p, out);
      break;
    case 4:
      DistFunction<Context, T, 4>(dev_ctx, x, y, p, out);
      break;
    case 5:
      DistFunction<Context, T, 5>(dev_ctx, x, y, p, out);
      break;
    case 6:
      DistFunction<Context, T, 6>(dev_ctx, x, y, p, out);
      break;
  }
}

}  // namespace phi