roi_pool_kernel.cu 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/roi_pool_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/kernel_registry.h"

#include "paddle/fluid/memory/memory.h"

namespace phi {

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <typename T>
__global__ void GPURoiPoolForward(const int nthreads,
                                  const T* input_data,
                                  const T* input_rois,
                                  const float spatial_scale,
                                  const int channels,
                                  const int height,
                                  const int width,
                                  const int pooled_height,
                                  const int pooled_width,
                                  int* box_batch_id_data,
                                  T* output_data,
                                  int64_t* arg_max_data) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t i = index; i < nthreads; i += offset) {
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % channels;
    int n = i / pooled_width / pooled_height / channels;

    const T* offset_input_rois = input_rois + n * kROISize;
    int box_batch_ind = box_batch_id_data[n];
    int box_start_w = round(offset_input_rois[0] * spatial_scale);
    int box_start_h = round(offset_input_rois[1] * spatial_scale);
    int box_end_w = round(offset_input_rois[2] * spatial_scale);
    int box_end_h = round(offset_input_rois[3] * spatial_scale);

    int box_width = max(box_end_w - box_start_w + 1, 1);
    int box_height = max(box_end_h - box_start_h + 1, 1);

    int hstart = static_cast<int>(floor(static_cast<double>(ph) *
                                        static_cast<double>(box_height) /
                                        static_cast<double>(pooled_height)));
    int wstart = static_cast<int>(floor(static_cast<double>(pw) *
                                        static_cast<double>(box_width) /
                                        static_cast<double>(pooled_width)));
    int hend = static_cast<int>(ceil(static_cast<double>(ph + 1) *
                                     static_cast<double>(box_height) /
                                     static_cast<double>(pooled_height)));
    int wend = static_cast<int>(ceil(static_cast<double>(pw + 1) *
                                     static_cast<double>(box_width) /
                                     static_cast<double>(pooled_width)));
    hstart = min(max(hstart + box_start_h, 0), height);
    hend = min(max(hend + box_start_h, 0), height);
    wstart = min(max(wstart + box_start_w, 0), width);
    wend = min(max(wend + box_start_w, 0), width);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    T maxval = is_empty ? 0 : -std::numeric_limits<T>::max();
    int maxidx = -1;
    const T* offset_input_data =
        input_data + (box_batch_ind * channels + c) * height * width;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int input_data_index = h * width + w;
        if (offset_input_data[input_data_index] > maxval) {
          maxval = offset_input_data[input_data_index];
          maxidx = input_data_index;
        }
      }
    }
    output_data[i] = maxval;
    if (arg_max_data) {
      arg_max_data[i] = maxidx;
    }
  }
}

template <typename T, typename Context>
void RoiPoolKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& boxes,
107
                   const paddle::optional<DenseTensor>& boxes_num,
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
                   int pooled_height,
                   int pooled_width,
                   float spatial_scale,
                   DenseTensor* out,
                   DenseTensor* arg_max) {
  auto x_dims = x.dims();
  int batch_size = x_dims[0];
  auto in_stride = phi::stride(x_dims);
  int channels = x_dims[1];
  int height = x_dims[2];
  int width = x_dims[3];

  int rois_num = boxes.dims()[0];

  if (rois_num == 0) return;

  int output_size = out->numel();
  int blocks = NumBlocks(output_size);
  int threads = kNumCUDAThreads;

  DenseTensor box_batch_id_list;
  box_batch_id_list.Resize({rois_num});
  int* box_batch_id_data = dev_ctx.template HostAlloc<int>(&box_batch_id_list);
  auto gplace = dev_ctx.GetPlace();

  if (boxes_num) {
    int boxes_batch_size = boxes_num->numel();
    PADDLE_ENFORCE_EQ(
        boxes_batch_size,
        batch_size,
        phi::errors::InvalidArgument(
            "The batch size of input(ROIs) and input(X) must be the same but "
            "received batch size of input(ROIs) and input(X) is %d and %d "
            "respectively.",
            boxes_batch_size,
            batch_size));
    std::vector<int> boxes_num_list(boxes_batch_size);
    paddle::memory::Copy(phi::CPUPlace(),
                         boxes_num_list.data(),
                         gplace,
                         boxes_num->data<int>(),
                         sizeof(int) * boxes_batch_size,
                         0);
    int start = 0;
    for (int n = 0; n < boxes_batch_size; ++n) {
      for (int i = start; i < start + boxes_num_list[n]; ++i) {
        box_batch_id_data[i] = n;
      }
      start += boxes_num_list[n];
    }
  } else {
    auto boxes_lod = boxes.lod().back();
    int boxes_batch_size = boxes_lod.size() - 1;
    PADDLE_ENFORCE_EQ(
        boxes_batch_size,
        batch_size,
        phi::errors::InvalidArgument(
            "The batch size of input(ROIs) and input(X) must be the same but "
            "received batch size of input(ROIs) and input(X) is %d and %d "
            "respectively.",
            boxes_batch_size,
            batch_size));

    int boxes_num_with_lod = boxes_lod[boxes_batch_size];
    PADDLE_ENFORCE_EQ(rois_num,
                      boxes_num_with_lod,
                      phi::errors::InvalidArgument(
                          "The number of rois from input(ROIs) and its LOD "
                          "must be the same. Received rois %d of input(ROIs) "
                          "but the number of rois %d from its LOD is %d",
                          rois_num,
                          boxes_num_with_lod));
    for (int n = 0; n < boxes_batch_size; ++n) {
      for (size_t i = boxes_lod[n]; i < boxes_lod[n + 1]; ++i) {
        box_batch_id_data[i] = n;
      }
    }
  }

  int bytes = box_batch_id_list.numel() * sizeof(int);
  auto box_ptr = paddle::memory::Alloc(dev_ctx, bytes);
  int* box_id_data = reinterpret_cast<int*>(box_ptr->ptr());
  paddle::memory::Copy(gplace,
                       box_id_data,
                       phi::CPUPlace(),
                       box_batch_id_data,
                       bytes,
                       dev_ctx.stream());

  T* output_data = dev_ctx.template Alloc<T>(out);
  int64_t* arg_max_data = dev_ctx.template Alloc<int64_t>(arg_max);

  GPURoiPoolForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
      output_size,
      x.data<T>(),
      boxes.data<T>(),
      spatial_scale,
      channels,
      height,
      width,
      pooled_height,
      pooled_width,
      box_id_data,
      output_data,
      arg_max_data);
}

}  // namespace phi

PD_REGISTER_KERNEL(
    roi_pool, GPU, ALL_LAYOUT, phi::RoiPoolKernel, float, double) {
  kernel->OutputAt(1).SetDataType(phi::DataType::INT64);
}