auto_tune_test.cu 5.4 KB
Newer Older
L
limingshu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include "glog/logging.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/autotune/auto_tune_base.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/funcs/aligned_vector.h"

namespace tune = phi::autotune;

template <typename T, int VecSize>
__global__ void VecSumTest(const T* x, T* y, int N) {
#ifdef __HIPCC__
  int idx = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
#else
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
#endif
  using LoadT = phi::AlignedVector<T, VecSize>;
  for (int i = idx * VecSize; i < N; i += blockDim.x * gridDim.x * VecSize) {
    LoadT x_vec;
    LoadT y_vec;
    phi::Load<T, VecSize>(&x[i], &x_vec);
    phi::Load<T, VecSize>(&y[i], &y_vec);
#pragma unroll
    for (int j = 0; j < VecSize; j++) {
      y_vec[j] = x_vec[j] + y_vec[j];
    }
    phi::Store<T, VecSize>(y_vec, &y[i]);
  }
}

template <int Vecsize>
float Algo(const phi::GPUContext& ctx,
           const phi::DenseTensor& d_in,
           phi::DenseTensor* d_out,
           size_t N,
           size_t threads,
           size_t blocks) {
  const float* d_in_data = d_in.data<float>();
  float* d_out_data = d_out->data<float>();
#ifdef __HIPCC__
  hipLaunchKernelGGL(HIP_KERNEL_NAME(VecSumTest<float, Vecsize>),
                     dim3(blocks),
                     dim3(threads),
                     0,
                     0,
                     d_in_data,
                     d_out_data,
                     N);
#else
  VLOG(3) << "Vecsize is " << Vecsize;
  VecSumTest<float, Vecsize><<<blocks, threads, 0, ctx.stream()>>>(
      d_in_data, d_out_data, N);
#endif
  return Vecsize;
}

TEST(AutoTune, sum) {
  int64_t N = 1 << 22;
  size_t blocks = 512;
  size_t threads = 256;
  size_t size = sizeof(float) * N;

  const auto alloc_cpu =
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace());
  auto in1 = std::make_shared<phi::DenseTensor>(
      alloc_cpu.get(),
      phi::DenseTensorMeta(
          phi::DataType::FLOAT32, phi::make_ddim({N}), phi::DataLayout::NCHW));
  auto in2 = std::make_shared<phi::DenseTensor>(
      alloc_cpu.get(),
      phi::DenseTensorMeta(
          phi::DataType::FLOAT32, phi::make_ddim({N}), phi::DataLayout::NCHW));

  float* in1_data = in1->data<float>();
  float* in2_data = in2->data<float>();
  for (size_t i = 0; i < N; i++) {
    in1_data[i] = 1.0f;
    in2_data[i] = 2.0f;
  }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  const auto alloc_cuda =
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CUDAPlace());
  phi::DeviceContextPool& pool = phi::DeviceContextPool::Instance();
  auto place = paddle::platform::CUDAPlace();
  auto* dev_ctx = static_cast<const phi::GPUContext*>(pool.GetByPlace(place));
  auto stream = dev_ctx->stream();

  auto d_in1 = std::make_shared<phi::DenseTensor>(
      alloc_cuda.get(),
      phi::DenseTensorMeta(
          phi::DataType::FLOAT32, phi::make_ddim({N}), phi::DataLayout::NCHW));
  auto d_in2 = std::make_shared<phi::DenseTensor>(
      alloc_cuda.get(),
      phi::DenseTensorMeta(
          phi::DataType::FLOAT32, phi::make_ddim({N}), phi::DataLayout::NCHW));
  phi::Copy(*dev_ctx, *in1.get(), phi::GPUPlace(), false, d_in1.get());
  phi::Copy(*dev_ctx, *in2.get(), phi::GPUPlace(), false, d_in2.get());

  // 1. Test call_back.
  VLOG(3) << ">>> [CallBack]: Test case.";
  auto callback1 = tune::MakeCallback(Algo<4>);
  auto callback2 = tune::MakeCallback(Algo<2>);
  auto callback3 = tune::MakeCallback(Algo<1>);
  std::vector<decltype(callback1)> callbacks{callback1, callback2, callback3};
  for (int i = 0; i < callbacks.size(); ++i) {
    dev_ctx->Wait();
    phi::GpuTimer timer;
    timer.Start(0);
    callbacks[i].Call(*dev_ctx, *d_in1.get(), d_in2.get(), N, threads, blocks);
    timer.Stop(0);
    VLOG(3) << "kernel[" << i << "]: time cost is " << timer.ElapsedTime();
  }

  // 2. Test call_back tune.
  VLOG(3) << ">>> [AutoTune]: Test case.";
  auto tuner = tune::MakeAutoTuner(Algo<4>);
  tuner.AddCallBack(tune::MakeCallback(Algo<2>));
  tuner.AddCallBack(tune::MakeCallback(Algo<1>));

  /* The 1st ctx works for ctx.Wait(),
     the 2nd is just the param of call_back. */
  auto best_call_back = tuner.PickBestKernel(
      *dev_ctx, *dev_ctx, *d_in1.get(), d_in2.get(), N, threads, blocks);
  best_call_back.Call(*dev_ctx, *d_in1.get(), d_in2.get(), N, threads, blocks);

  dev_ctx->Wait();
  phi::GpuTimer timer;
  timer.Start(0);
  best_call_back.Call(*dev_ctx, *d_in1.get(), d_in2.get(), N, threads, blocks);
  timer.Stop(0);
  VLOG(3) << "Best CallBackKernel time cost is " << timer.ElapsedTime();
#endif
}