test_mkldnn_op_nhwc.cc 9.8 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <cstdlib>
#include <memory>
#include <random>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
27
#include "paddle/phi/core/kernel_registry.h"
J
Jacek Czaja 已提交
28

F
From00 已提交
29
USE_OP_ITSELF(pool2d);
J
Jacek Czaja 已提交
30
USE_OP_DEVICE_KERNEL(pool2d, MKLDNN);
31
USE_OP_ITSELF(relu);
J
Jacek Czaja 已提交
32
USE_OP_DEVICE_KERNEL(relu, MKLDNN);
H
hong 已提交
33
USE_OP_ITSELF(transpose);
J
Jacek Czaja 已提交
34
USE_OP_DEVICE_KERNEL(transpose, MKLDNN);
35 36
USE_OP_ITSELF(shape);
USE_OP_DEVICE_KERNEL(shape, MKLDNN);
37 38
USE_OP_ITSELF(crop);
USE_OP_DEVICE_KERNEL(crop, CPU);
J
Jacek Czaja 已提交
39

F
From00 已提交
40
PD_DECLARE_KERNEL(pool2d, CPU, ALL_LAYOUT);
41
PD_DECLARE_KERNEL(relu, CPU, ALL_LAYOUT);
42
PD_DECLARE_KERNEL(shape, CPU, ALL_LAYOUT);
43

J
Jacek Czaja 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
namespace paddle {
namespace operators {

struct InputVars {
  std::string name;
  framework::LoDTensor *tensor;
};

TEST(test_pool2d_transpose_nhwc, cpu_place) {
  framework::DDim dims({1, 4, 8, 512});           // NHWC shape
  framework::DDim expected_dims({1, 7, 512, 3});  // NHWC expected shape
  platform::CPUPlace p;
  framework::Scope scope;

  InputVars input_name = {"x",
                          scope.Var("x")->GetMutable<framework::LoDTensor>()};
  // Initialize input data
  std::uniform_real_distribution<float> dist(static_cast<float>(10.0),
                                             static_cast<float>(20.0));
  std::mt19937 engine;
64
  size_t numel = static_cast<size_t>(phi::product(dims));
J
Jacek Czaja 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  input_name.tensor->Resize(dims);
  auto data_ptr = input_name.tensor->mutable_data<float>(p);
  for (size_t i = 0; i < numel; ++i) {
    data_ptr[i] = dist(engine);
  }

  scope.Var("y")->GetMutable<framework::LoDTensor>();
  auto *z = scope.Var("z")->GetMutable<framework::LoDTensor>();

  auto &pool = platform::DeviceContextPool::Instance();

  // Make pool2d followed by transpose

  auto ksize = std::vector<int>(2, 2);
  auto op_pool = framework::OpRegistry::CreateOp(
      "pool2d", {{"X", {"x"}}}, {{"Out", {"y"}}},
      {{"pooling_type", {std::string("max")}},
       {"ksize", {ksize}},
       {"data_format", {std::string("NHWC")}},
       {"use_mkldnn", {true}}});

  auto axis = std::vector<int>(4, 0);
  axis[1] = 2;
  axis[2] = 3;
  axis[3] = 1;
  auto op_transpose = framework::OpRegistry::CreateOp(
      "transpose", {{"X", {"y"}}}, {{"Out", {"z"}}},
      {{"axis", {axis}}, {"use_mkldnn", {true}}});

  op_pool->Run(scope, p);
  op_transpose->Run(scope, p);
  pool.Get(p)->Wait();

  // Verify shape of output
  PADDLE_ENFORCE_EQ(z->dims(), expected_dims,
                    platform::errors::InvalidArgument(
                        "Computed shape does not match expected shape"));
}

J
Jacek Czaja 已提交
104 105
TEST(test_pool2d_relu_relu_nhwc, cpu_place) {
  framework::DDim dims({1, 4, 8, 512});           // NHWC shape
J
Jacek Czaja 已提交
106
  framework::DDim expected_dims({1, 512, 3, 7});  // NCHW expected shape
J
Jacek Czaja 已提交
107 108 109 110 111 112 113 114 115
  platform::CPUPlace p;
  framework::Scope scope;

  InputVars input_name = {"x",
                          scope.Var("x")->GetMutable<framework::LoDTensor>()};
  // Initialize input data
  std::uniform_real_distribution<float> dist(static_cast<float>(10.0),
                                             static_cast<float>(20.0));
  std::mt19937 engine;
116
  size_t numel = static_cast<size_t>(phi::product(dims));
J
Jacek Czaja 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  input_name.tensor->Resize(dims);
  auto data_ptr = input_name.tensor->mutable_data<float>(p);
  for (size_t i = 0; i < numel; ++i) {
    data_ptr[i] = dist(engine);
  }

  scope.Var("y")->GetMutable<framework::LoDTensor>();
  scope.Var("u")->GetMutable<framework::LoDTensor>();
  auto *z = scope.Var("z")->GetMutable<framework::LoDTensor>();

  auto &pool = platform::DeviceContextPool::Instance();

  // Make pool2d(oneDNN) followed by relu(CPU paddle) followed by
  // relu(oneDNN). Second relu should make a shape rotation to NCHW

  auto ksize = std::vector<int>(2, 2);
  auto op_pool = framework::OpRegistry::CreateOp(
      "pool2d", {{"X", {"x"}}}, {{"Out", {"y"}}},
      {{"pooling_type", {std::string("max")}},
       {"ksize", {ksize}},
       {"data_format", {std::string("NHWC")}},
       {"use_mkldnn", {true}}});

  auto axis = std::vector<int>(4, 0);
  axis[1] = 2;
  axis[2] = 3;
  axis[3] = 1;
  auto op_relu1 = framework::OpRegistry::CreateOp(
      "relu", {{"X", {"y"}}}, {{"Out", {"u"}}},
      {{"axis", {axis}}, {"use_mkldnn", {false}}});

  auto op_relu2 = framework::OpRegistry::CreateOp(
      "relu", {{"X", {"u"}}}, {{"Out", {"z"}}}, {{"use_mkldnn", {true}}});

  op_pool->Run(scope, p);
  op_relu1->Run(scope, p);
  op_relu2->Run(scope, p);

  pool.Get(p)->Wait();

  // Verify shape of output
  PADDLE_ENFORCE_EQ(z->dims(), expected_dims,
                    platform::errors::InvalidArgument(
                        "Computed shape does not match expected shape"));
}
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

TEST(test_pool2d_shape_nhwc, cpu_place) {
  framework::DDim dims({1, 4, 8, 512});              // NHWC shape
  std::vector<int32_t> expected_dims{1, 3, 7, 512};  // NHWC expected shape
  platform::CPUPlace p;
  framework::Scope scope;

  InputVars input_name = {"x",
                          scope.Var("x")->GetMutable<framework::LoDTensor>()};
  // Initialize input data
  std::uniform_real_distribution<float> dist(static_cast<float>(10.0),
                                             static_cast<float>(20.0));
  std::mt19937 engine;
  size_t numel = static_cast<size_t>(phi::product(dims));
  input_name.tensor->Resize(dims);
  auto data_ptr = input_name.tensor->mutable_data<float>(p);
  for (size_t i = 0; i < numel; ++i) {
    data_ptr[i] = dist(engine);
  }

  scope.Var("y")->GetMutable<framework::LoDTensor>();
  auto *z = scope.Var("z")->GetMutable<framework::LoDTensor>();

  auto &pool = platform::DeviceContextPool::Instance();

  // Make pool2d followed by shape. shape for NHWC should return
  // as output tensor not-rotated shape of Pool (

  auto ksize = std::vector<int>(2, 2);
  auto op_pool = framework::OpRegistry::CreateOp(
      "pool2d", {{"X", {"x"}}}, {{"Out", {"y"}}},
      {{"pooling_type", {std::string("max")}},
       {"ksize", {ksize}},
       {"data_format", {std::string("NHWC")}},
       {"use_mkldnn", {true}}});

  auto op_shape = framework::OpRegistry::CreateOp(
      "shape", {{"Input", {"y"}}}, {{"Out", {"z"}}}, {{"use_mkldnn", {true}}});

  op_pool->Run(scope, p);
  op_shape->Run(scope, p);

  pool.Get(p)->Wait();

  // repack tensor data into vector for easy comparison
  auto *zdata = z->data<int32_t>();
  std::vector<int32_t> vzdata(zdata, zdata + z->numel());

  // Verify shape of output
  PADDLE_ENFORCE_EQ(vzdata, expected_dims,
                    platform::errors::InvalidArgument(
                        "Computed shape does not match expected shape"));
}

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
TEST(test_pool2d_crop_nhwc, cpu_place) {
  framework::DDim dims({1, 4, 8, 512});           // NHWC shape
  framework::DDim expected_dims({1, 3, 7, 512});  // NCHW expected shape
  platform::CPUPlace p;
  framework::Scope scope;

  InputVars input_name = {"x",
                          scope.Var("x")->GetMutable<framework::LoDTensor>()};
  InputVars second_crop_input_name = {
      "v", scope.Var("v")->GetMutable<framework::LoDTensor>()};
  // Initialize input data
  std::uniform_real_distribution<float> dist(10.0f, 20.0f);
  std::mt19937 engine;
  size_t numel = static_cast<size_t>(phi::product(dims));
  input_name.tensor->Resize(dims);
  auto data_ptr = input_name.tensor->mutable_data<float>(p);
  for (size_t i = 0; i < numel; ++i) {
    data_ptr[i] = dist(engine);
  }
  // Second input (Y) to crop is having no buffer
  // but as it is MKLDNN then its shape order should be NCHW
  auto expected_dims_nchw = phi::vectorize<int64_t>(expected_dims);
  std::rotate(expected_dims_nchw.begin() + 1, expected_dims_nchw.end() - 1,
              expected_dims_nchw.end());
  second_crop_input_name.tensor->Resize(phi::make_ddim(expected_dims_nchw));
  const auto second_crop_input_md =
      dnnl::memory::desc(expected_dims_nchw, dnnl::memory::data_type::f32,
                         dnnl::memory::format_tag::nhwc);
  second_crop_input_name.tensor->set_mem_desc(second_crop_input_md);

  scope.Var("y")->GetMutable<framework::LoDTensor>();
  auto *z = scope.Var("z")->GetMutable<framework::LoDTensor>();

  auto &pool = platform::DeviceContextPool::Instance();

  // Make pool2d followed by crop. crop may have Y input as
  // non buffered so the path to be executed is handling oneDNN kernel
  // that is followed by CPU kernel with non-buffered Input

  auto ksize = std::vector<int>(2, 2);
  auto op_pool = framework::OpRegistry::CreateOp(
      "pool2d", {{"X", {"x"}}}, {{"Out", {"y"}}},
      {{"pooling_type", {std::string("max")}},
       {"ksize", {ksize}},
       {"data_format", {std::string("NHWC")}},
       {"use_mkldnn", {true}}});

  std::vector<int> offsets{0, 0, 0, 0};
  auto op_crop = framework::OpRegistry::CreateOp(
      "crop", {{"X", {"y"}}, {"Y", {"v"}}}, {{"Out", {"z"}}},
      {{"offsets", {offsets}}});

  op_pool->Run(scope, p);
  op_crop->Run(scope, p);

  pool.Get(p)->Wait();

  // Verify shape of output
  PADDLE_ENFORCE_EQ(z->dims(), expected_dims,
                    platform::errors::InvalidArgument(
                        "Output shape does not match expected output shape"));
}

J
Jacek Czaja 已提交
279 280
}  // namespace operators
}  // namespace paddle