hogwild_worker.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/data_type.h"
16
#include "paddle/fluid/framework/device_worker.h"
17
#include "paddle/fluid/framework/device_worker_factory.h"
18
#include "paddle/fluid/operators/distributed/distributed.h"
19
#include "paddle/fluid/platform/cpu_helper.h"
D
dongdaxiang 已提交
20
#include "paddle/fluid/platform/lodtensor_printer.h"
21 22 23 24

namespace paddle {
namespace framework {

25
void HogwildWorker::Initialize(const TrainerDesc &desc) {
D
dongdaxiang 已提交
26
  fetch_config_ = desc.fetch_config();
27 28
  param_ = desc.hogwild_param();
  skip_ops_.resize(param_.skip_ops_size());
29
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
30 31
    skip_ops_[i] = param_.skip_ops(i);
  }
32
  use_cvm_ = desc.use_cvm();
33
  thread_barrier_ = desc.thread_barrier();
D
dongdaxiang 已提交
34 35
}

36 37
void HogwildWorker::CreateThreadOperators(const ProgramDesc &program) {
  auto &block = program.Block(0);
38
  op_names_.clear();
39
  for (auto &op_desc : block.AllOps()) {
40 41
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
42
    OperatorBase *local_op_ptr = local_op.release();
43 44 45 46 47
    ops_.push_back(local_op_ptr);
    continue;
  }
}

48 49
void HogwildWorker::CreateThreadScope(const ProgramDesc &program) {
  auto &block = program.Block(0);
50 51 52 53 54

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_, "root_scope should be set before creating thread scope");

  thread_scope_ = &root_scope_->NewScope();
55 56

  for (auto &var : block.AllVars()) {
57
    if (var->Persistable()) {
58
      auto *ptr = root_scope_->Var(var->Name());
59
      InitializeVariable(ptr, var->GetType());
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
      if (stat_var_name_map_.find(var->Name()) != stat_var_name_map_.end() &&
          thread_id_ != 0) {
        int tensor_dim =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>()->numel();
        auto *ptr1 = thread_scope_->Var(var->Name());
        InitializeVariable(ptr1, var->GetType());
        LoDTensor *thread_tensor = ptr1->GetMutable<LoDTensor>();
        LoDTensor *root_tensor =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>();
#define MemsetCallback(cpp_type, proto_type)                     \
  do {                                                           \
    if (root_tensor->type() == proto_type) {                     \
      SetZero<cpp_type>(thread_tensor, root_tensor, tensor_dim); \
    }                                                            \
  } while (0)
        _ForEachDataType_(MemsetCallback);
      }
77
    } else {
78
      auto *ptr = thread_scope_->Var(var->Name());
79 80 81 82 83
      InitializeVariable(ptr, var->GetType());
    }
  }
}

84 85 86 87 88 89 90
template <typename T>
void HogwildWorker::SetZero(LoDTensor *tensor, LoDTensor *root_tensor,
                            int tensor_dim) {
  T *ptr = tensor->mutable_data<T>(root_tensor->dims(), platform::CPUPlace());
  memset(ptr, 0, sizeof(T) * tensor_dim);
}

91
void HogwildWorker::BindingDataFeedMemory() {
92
  const std::vector<std::string> &input_feed =
93
      device_reader_->GetUseSlotAlias();
94
  for (auto name : input_feed) {
95
    device_reader_->AddFeedVar(thread_scope_->FindVar(name), name);
96 97 98
  }
}

99
void HogwildWorker::CreateDeviceResource(const ProgramDesc &main_prog) {
100 101 102 103 104 105
  CreateThreadScope(main_prog);
  CreateThreadOperators(main_prog);
}

void HogwildWorker::TrainFilesWithProfiler() {
  platform::SetNumThreads(1);
106
  device_reader_->Start();
107 108
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
109
  for (auto &op : ops_) {
110 111 112 113 114 115 116 117 118 119 120 121
    op_name.push_back(op->Type());
  }
  op_total_time.resize(ops_.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
D
dongdaxiang 已提交
122
  uint64_t total_inst = 0;
123
  while ((cur_batch = device_reader_->Next()) > 0) {
124
    VLOG(3) << "read a batch in thread " << thread_id_;
125 126 127 128
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    for (size_t i = 0; i < ops_.size(); ++i) {
129 130 131 132 133 134 135
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (ops_[i]->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
136
      timeline.Start();
137
      VLOG(3) << "Going to run op " << op_name[i];
138 139 140
      if (!need_skip) {
        ops_[i]->Run(*thread_scope_, place_);
      }
141
      VLOG(3) << "Op " << op_name[i] << " Finished";
142 143 144 145
      timeline.Pause();
      op_total_time[i] += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
    }
D
dongdaxiang 已提交
146
    total_inst += cur_batch;
147
    ++batch_cnt;
D
dongdaxiang 已提交
148
    PrintFetchVars();
149 150 151 152 153 154 155
    if (thread_id_ == 0) {
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < ops_.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
D
dongdaxiang 已提交
156
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
157
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
158 159
      }
    }
D
dongdaxiang 已提交
160
    thread_scope_->DropKids();
161 162
    timeline.Start();
  }
163 164 165 166 167 168
#ifdef PADDLE_WITH_DISTRIBUTE
  if (thread_barrier_) {
    operators::distributed::Communicator::GetInstance()
        ->BarrierTriggerDecrement();
  }
#endif
169 170 171 172 173 174
}

void HogwildWorker::TrainFiles() {
  platform::SetNumThreads(1);

  // how to accumulate fetched values here
175
  device_reader_->Start();
176
  int cur_batch;
177
  while ((cur_batch = device_reader_->Next()) > 0) {
178
    for (auto &op : ops_) {
179 180 181 182 183 184 185 186 187 188
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
189 190
    }

D
dongdaxiang 已提交
191
    PrintFetchVars();
D
dongdaxiang 已提交
192
    thread_scope_->DropKids();
193
  }
194 195 196 197 198 199
#ifdef PADDLE_WITH_DISTRIBUTE
  if (thread_barrier_) {
    operators::distributed::Communicator::GetInstance()
        ->BarrierTriggerDecrement();
  }
#endif
200 201
}

D
dongdaxiang 已提交
202 203 204 205
void HogwildWorker::PrintFetchVars() {
  // call count
  batch_num_++;
  int batch_per_print = fetch_config_.print_period();
D
dongdaxiang 已提交
206
  if (thread_id_ == 0) {
D
dongdaxiang 已提交
207 208
    if (batch_num_ % batch_per_print == 0) {
      int fetch_var_num = fetch_config_.fetch_var_names_size();
D
dongdaxiang 已提交
209
      for (int i = 0; i < fetch_var_num; ++i) {
D
dongdaxiang 已提交
210
        platform::PrintVar(thread_scope_, fetch_config_.fetch_var_names(i),
D
dongdaxiang 已提交
211
                           fetch_config_.fetch_var_str_format(i));
D
dongdaxiang 已提交
212 213 214 215 216
      }
    }
  }
}

217 218
}  // end namespace framework
}  // end namespace paddle