ps_gpu_wrapper.cc 15.5 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
29
#ifdef PADDLE_WITH_HETERPS
Y
yaoxuefeng 已提交
30

T
Thunderbrook 已提交
31
#include <algorithm>
Y
yaoxuefeng 已提交
32 33
#include <deque>

T
Thunderbrook 已提交
34 35 36 37 38 39 40 41 42
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/platform/timer.h"

namespace paddle {
namespace framework {

std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;

43 44
void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task,
                             uint64_t table_id, int feature_dim) {
Y
yaoxuefeng 已提交
45
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
46 47
  platform::Timer timeline;
  timeline.Start();
48
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
49
  MultiSlotDataset* dataset = dynamic_cast<MultiSlotDataset*>(dataset_);
50
  gpu_task->init(thread_keys_shard_num_, device_num);
Y
yaoxuefeng 已提交
51 52 53
  auto input_channel = dataset->GetInputChannel();
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;
54 55 56 57 58

  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
  auto& device_mutex = gpu_task->mutex_;

Y
yaoxuefeng 已提交
59
  std::vector<std::thread> threads;
T
Thunderbrook 已提交
60
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
61
  auto fleet_ptr = FleetWrapper::GetInstance();
T
Thunderbrook 已提交
62 63 64 65
#endif
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = paddle::distributed::Communicator::GetInstance();
#endif
Y
yaoxuefeng 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

  // data should be in input channel
  thread_keys_.resize(thread_keys_thread_num_);
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    thread_keys_[i].resize(thread_keys_shard_num_);
    for (int j = 0; j < thread_keys_shard_num_; j++) {
    }
  }
  const std::deque<Record>& vec_data = input_channel->GetData();
  size_t total_len = vec_data.size();
  size_t len_per_thread = total_len / thread_keys_thread_num_;
  int remain = total_len % thread_keys_thread_num_;
  size_t begin = 0;
  auto gen_func = [this](const std::deque<Record>& total_data, int begin_index,
                         int end_index, int i) {
    for (auto iter = total_data.begin() + begin_index;
         iter != total_data.begin() + end_index; iter++) {
      const auto& ins = *iter;
      const auto& feasign_v = ins.uint64_feasigns_;
      for (const auto feasign : feasign_v) {
        uint64_t cur_key = feasign.sign().uint64_feasign_;
        int shard_id = cur_key % thread_keys_shard_num_;
88
        this->thread_keys_[i][shard_id].insert(cur_key);
Y
yaoxuefeng 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
      }
    }
  };
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    threads.push_back(std::thread(gen_func, std::ref(vec_data), begin,
                                  begin + len_per_thread + (i < remain ? 1 : 0),
                                  i));
    begin += len_per_thread + (i < remain ? 1 : 0);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
102
  VLOG(1) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
103 104 105 106 107 108 109 110 111 112 113 114

  timeline.Start();

  // merge thread_keys to shard_keys
  for (size_t i = 0; i < thread_keys_.size(); i++) {
    gpu_task->batch_add_keys(thread_keys_[i]);
    for (int j = 0; j < thread_keys_thread_num_; j++) {
      thread_keys_[i][j].clear();
    }
  }
  timeline.Pause();

115
  VLOG(1) << "GpuPs task unique11111 cost " << timeline.ElapsedSec()
Y
yaoxuefeng 已提交
116 117 118 119 120
          << " seconds.";
  timeline.Start();
  gpu_task->UniqueKeys();
  timeline.Pause();

121
  VLOG(1) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
122 123

  for (int i = 0; i < thread_keys_shard_num_; i++) {
124
    VLOG(3) << "GpuPs shard: " << i << " key len: " << local_keys[i].size();
Y
yaoxuefeng 已提交
125 126
    local_ptr[i].resize(local_keys[i].size());
  }
127
  timeline.Start();
128
  auto ptl_func = [this, &local_keys, &local_ptr, &table_id,
Y
yaoxuefeng 已提交
129 130
                   &fleet_ptr](int i) {
    size_t key_size = local_keys[i].size();
T
Thunderbrook 已提交
131
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
132 133 134
    auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
        reinterpret_cast<char**>(local_ptr[i].data()), table_id,
        local_keys[i].data(), key_size);
T
Thunderbrook 已提交
135 136 137 138 139 140
#endif
#ifdef PADDLE_WITH_PSCORE
    auto tt = fleet_ptr->_worker_ptr->pull_sparse_ptr(
        reinterpret_cast<char**>(local_ptr[i].data()), table_id,
        local_keys[i].data(), key_size);
#endif
Y
yaoxuefeng 已提交
141 142 143 144 145 146 147 148 149 150 151
    tt.wait();
    auto status = tt.get();
    // auto status = 0;
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(3) << "FleetWrapper Pull sparse to local done with table size: "
              << local_keys[i].size();
    }
152 153 154 155 156 157 158 159
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(ptl_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
160 161
  VLOG(1) << "pull sparse from CpuPS into GpuPS cost " << timeline.ElapsedSec()
          << " seconds.";
162 163 164 165 166

  timeline.Start();
  auto build_func = [device_num, &local_keys, &local_ptr, &device_keys,
                     &device_vals, &device_mutex](int i) {
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
T
Thunderbrook 已提交
167
#ifdef PADDLE_WITH_PSLIB
168 169
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);
T
Thunderbrook 已提交
170 171 172 173 174
#endif

#ifdef PADDLE_WITH_PSCORE
    std::vector<std::vector<paddle::distributed::VALUE*>> task_ptrs(device_num);
#endif
175 176 177 178 179 180 181 182 183 184 185 186 187 188

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }

    for (int dev = 0; dev < device_num; dev++) {
      device_mutex[dev]->lock();

      int len = task_keys[dev].size();
      int cur = device_keys[dev].size();
      device_keys[dev].resize(device_keys[dev].size() + len);
      device_vals[dev].resize(device_vals[dev].size() + len);
T
Thunderbrook 已提交
189
#ifdef PADDLE_WITH_PSLIB
190 191 192 193 194 195 196 197 198 199 200 201
      for (int j = 0; j < len; ++j) {
        device_keys[dev][cur + j] = task_keys[dev][j];
        float* ptr_val = task_ptrs[dev][j]->data();
        FeatureValue& val = device_vals[dev][cur + j];
        size_t dim = task_ptrs[dev][j]->size();

        val.delta_score = ptr_val[1];
        val.show = ptr_val[2];
        val.clk = ptr_val[3];
        val.slot = ptr_val[6];
        val.lr = ptr_val[4];
        val.lr_g2sum = ptr_val[5];
T
Thunderbrook 已提交
202
        val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);
203 204 205 206 207 208 209 210 211 212 213

        if (dim > 7) {
          val.mf_size = MF_DIM + 1;
          for (int x = 0; x < val.mf_size; x++) {
            val.mf[x] = ptr_val[x + 7];
          }
        } else {
          val.mf_size = 0;
          for (int x = 0; x < MF_DIM + 1; x++) {
            val.mf[x] = 0;
          }
Y
yaoxuefeng 已提交
214 215
        }
      }
T
Thunderbrook 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
#endif
#ifdef PADDLE_WITH_PSCORE
      for (int j = 0; j < len; ++j) {
        device_keys[dev][cur + j] = task_keys[dev][j];
        distributed::VALUE* ptr_val = task_ptrs[dev][j];
        FeatureValue& val = device_vals[dev][cur + j];
        bool has_mf = 1;
        val.delta_score = 0;
        val.show = ptr_val->count_;
        val.clk = 0;
        val.slot = 0;
        val.lr = 0;
        val.lr_g2sum = 0;
        val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

        if (has_mf) {
          val.mf_size = MF_DIM + 1;
          for (int x = 0; x < val.mf_size; x++) {
            val.mf[x] = ptr_val->data_[x];
          }
        } else {
          val.mf_size = 0;
          for (int x = 0; x < MF_DIM + 1; x++) {
            val.mf[x] = 0;
          }
        }
      }
#endif
      VLOG(1) << "GpuPs build hbmps done";
245 246

      device_mutex[dev]->unlock();
Y
yaoxuefeng 已提交
247 248
    }
  };
249

Y
yaoxuefeng 已提交
250
  for (size_t i = 0; i < threads.size(); i++) {
251
    threads[i] = std::thread(build_func, i);
Y
yaoxuefeng 已提交
252 253 254 255 256
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
257 258
  VLOG(1) << "GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
          << " seconds.";
Y
yaoxuefeng 已提交
259 260 261
}

void PSGPUWrapper::BuildGPUPS(uint64_t table_id, int feature_dim) {
262 263 264
  int device_num = heter_devices_.size();
  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  BuildTask(gpu_task, table_id, feature_dim);
Y
yaoxuefeng 已提交
265 266
  platform::Timer timeline;
  timeline.Start();
T
Thunderbrook 已提交
267

268
  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
269
  size_t size_max = 0;
270 271
  for (int i = 0; i < device_num; i++) {
    feature_keys_count[i] = gpu_task->device_keys_[i].size();
272
    VLOG(1) << i << " card contains feasign nums: " << feature_keys_count[i];
T
Thunderbrook 已提交
273 274 275 276 277 278
    size_max = std::max(size_max, feature_keys_count[i]);
  }
  if (HeterPs_) {
    HeterPs_->show_one_table(0);
    return;
  }
279
  std::vector<std::thread> threads(device_num);
T
Thunderbrook 已提交
280
  HeterPs_ = HeterPsBase::get_instance(size_max, resource_);
281
  HeterPs_->set_nccl_comm_and_size(inner_comms_, inter_comms_, node_size_);
Y
yaoxuefeng 已提交
282
  auto build_func = [this, &gpu_task, &feature_keys_count](int i) {
T
Thunderbrook 已提交
283
    std::cout << "building table: " << i << std::endl;
284 285 286
    this->HeterPs_->build_ps(i, gpu_task->device_keys_[i].data(),
                             gpu_task->device_values_[i].data(),
                             feature_keys_count[i], 500000, 2);
T
Thunderbrook 已提交
287
    HeterPs_->show_one_table(i);
Y
yaoxuefeng 已提交
288 289 290 291 292 293
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(build_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
294 295
  }
  timeline.Pause();
296
  VLOG(1) << "GpuPs build table total costs: " << timeline.ElapsedSec()
T
Thunderbrook 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
          << " s.";
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
  VLOG(3) << "Begine Gpu Ps PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  auto buf = memory::AllocShared(place, total_length * sizeof(FeatureValue));
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
    auto buf_key = memory::AllocShared(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::AllocShared(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    // PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
    //                              "PullSparseGPU failed in GPUPS."));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GpuPs: PullSparse Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
362
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
                                  const int hidden_size, const int batch_size) {
  VLOG(3) << "Begin GPUPS PushSparseGrad";
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  auto buf =
      memory::AllocShared(place, total_length * sizeof(FeaturePushValue));
  FeaturePushValue* total_grad_values_gpu =
      reinterpret_cast<FeaturePushValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to gpups struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
408
  VLOG(3) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
409 410 411 412 413 414 415 416
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

}  // end namespace framework
}  // end namespace paddle
#endif