vgg16.py 4.8 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

T
typhoonzero 已提交
15 16
import gzip

T
typhoonzero 已提交
17
import paddle.v2.dataset.cifar as cifar
T
typhoonzero 已提交
18 19
import paddle.v2 as paddle
import reader
T
typhoonzero 已提交
20
import time
T
typhoonzero 已提交
21

T
typhoonzero 已提交
22 23
DATA_DIM = 3 * 32 * 32
CLASS_DIM = 10
T
typhoonzero 已提交
24
BATCH_SIZE = 128
T
typhoonzero 已提交
25
ts = 0
T
typhoonzero 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78


def vgg(input, nums, class_dim):
    def conv_block(input, num_filter, groups, num_channels=None):
        return paddle.networks.img_conv_group(
            input=input,
            num_channels=num_channels,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act=paddle.activation.Relu(),
            pool_type=paddle.pooling.Max())

    assert len(nums) == 5
    # the channel of input feature is 3
    conv1 = conv_block(input, 64, nums[0], 3)
    conv2 = conv_block(conv1, 128, nums[1])
    conv3 = conv_block(conv2, 256, nums[2])
    conv4 = conv_block(conv3, 512, nums[3])
    conv5 = conv_block(conv4, 512, nums[4])

    fc_dim = 4096
    fc1 = paddle.layer.fc(input=conv5,
                          size=fc_dim,
                          act=paddle.activation.Relu(),
                          layer_attr=paddle.attr.Extra(drop_rate=0.5))
    fc2 = paddle.layer.fc(input=fc1,
                          size=fc_dim,
                          act=paddle.activation.Relu(),
                          layer_attr=paddle.attr.Extra(drop_rate=0.5))
    out = paddle.layer.fc(input=fc2,
                          size=class_dim,
                          act=paddle.activation.Softmax())
    return out


def vgg13(input, class_dim):
    nums = [2, 2, 2, 2, 2]
    return vgg(input, nums, class_dim)


def vgg16(input, class_dim):
    nums = [2, 2, 3, 3, 3]
    return vgg(input, nums, class_dim)


def vgg19(input, class_dim):
    nums = [2, 2, 4, 4, 4]
    return vgg(input, nums, class_dim)


def main():
T
typhoonzero 已提交
79
    global ts
80
    paddle.init(use_gpu=False, trainer_count=1)
T
typhoonzero 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    image = paddle.layer.data(
        name="image", type=paddle.data_type.dense_vector(DATA_DIM))
    lbl = paddle.layer.data(
        name="label", type=paddle.data_type.integer_value(CLASS_DIM))

    extra_layers = None
    learning_rate = 0.01
    out = vgg16(image, class_dim=CLASS_DIM)
    cost = paddle.layer.classification_cost(input=out, label=lbl)

    # Create parameters
    parameters = paddle.parameters.create(cost)

    # Create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0005 *
                                                         BATCH_SIZE),
        learning_rate=learning_rate / BATCH_SIZE,
        learning_rate_decay_a=0.1,
        learning_rate_decay_b=128000 * 35,
        learning_rate_schedule="discexp", )

    train_reader = paddle.batch(
        paddle.reader.shuffle(
T
typhoonzero 已提交
106
            cifar.train10(),
T
typhoonzero 已提交
107 108 109 110 111
            # To use other data, replace the above line with:
            # reader.train_reader('train.list'),
            buf_size=1000),
        batch_size=BATCH_SIZE)
    test_reader = paddle.batch(
T
typhoonzero 已提交
112
        cifar.test10(),
T
typhoonzero 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125
        # To use other data, replace the above line with:
        # reader.test_reader('val.list'),
        batch_size=BATCH_SIZE)

    # Create trainer
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=optimizer,
                                 extra_layers=extra_layers,
                                 is_local=False)

    # End batch and end pass event handler
    def event_handler(event):
T
typhoonzero 已提交
126 127 128
        global ts
        if isinstance(event, paddle.event.BeginIteration):
            ts = time.time()
T
typhoonzero 已提交
129 130
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 1 == 0:
T
typhoonzero 已提交
131 132 133
                print "\nPass %d, Batch %d, Cost %f, %s, spent: %f" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics,
                    time.time() - ts)
T
typhoonzero 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146
        if isinstance(event, paddle.event.EndPass):
            with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
                trainer.save_parameter_to_tar(f)

            result = trainer.test(reader=test_reader)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    trainer.train(
        reader=train_reader, num_passes=200, event_handler=event_handler)


if __name__ == '__main__':
    main()
T
typhoonzero 已提交
147