elementwise.cc 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/anakin/convert/elementwise.h"
#include <algorithm>
#include <string>
#include <vector>

using anakin::PTuple;

namespace paddle {
namespace inference {
namespace anakin {

26 27
template <typename TargetT, ::anakin::Precision PrecisionT>
void ElementwiseAddOpConverter<TargetT, PrecisionT>::operator()(
28 29
    const framework::proto::OpDesc &op, const framework::BlockDesc &block_desc,
    const framework::Scope &scope, bool test_mode) {
30 31
  framework::OpDesc op_desc(op, nullptr);
  PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
32
  PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);
33 34 35 36 37 38 39
  PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

  auto x_name = op_desc.Input("X").front();
  auto y_name = op_desc.Input("Y").front();
  auto out_name = op_desc.Output("Out").front();
  auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front();

40
  this->engine_->AddOp(op_name, "Eltwise", {x_name, y_name}, {out_name});
41
  std::string elementwise_type = "Add";
42 43
  this->engine_->template AddOpAttr<std::string>(op_name, "type",
                                                 elementwise_type);
44
  std::vector<float> coeff = {1.0, 1.0};
45
  this->engine_->template AddOpAttr<PTuple<float>>(op_name, "coeff", coeff);
46 47
}

48 49
template <typename TargetT, ::anakin::Precision PrecisionT>
void ElementwiseMulOpConverter<TargetT, PrecisionT>::operator()(
50 51
    const framework::proto::OpDesc &op, const framework::BlockDesc &block_desc,
    const framework::Scope &scope, bool test_mode) {
52 53 54 55 56 57 58 59 60 61
  framework::OpDesc op_desc(op, nullptr);
  PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
  PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);
  PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

  auto x_name = op_desc.Input("X").front();
  auto y_name = op_desc.Input("Y").front();
  auto out_name = op_desc.Output("Out").front();
  auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front();

62 63 64 65 66 67
  this->engine_->AddOp(op_name, "Eltwise", {x_name, y_name}, {out_name});
  std::string elementwise_type = "Prod";
  this->engine_->template AddOpAttr<std::string>(op_name, "type",
                                                 elementwise_type);
  std::vector<float> coeff = {1.0, 1.0};
  this->engine_->template AddOpAttr<PTuple<float>>(op_name, "coeff", coeff);
68 69
}

70 71 72 73
}  // namespace anakin
}  // namespace inference
}  // namespace paddle

74
#ifdef PADDLE_WITH_CUDA
75 76 77 78 79 80 81 82 83 84 85 86 87 88
using elet_nv_fp32 = ::paddle::inference::anakin::ElementwiseAddOpConverter<
    ::anakin::saber::NV, ::anakin::Precision::FP32>;
using elet_nv_int8 = ::paddle::inference::anakin::ElementwiseAddOpConverter<
    ::anakin::saber::NV, ::anakin::Precision::INT8>;
using eletmul_nv_fp32 = ::paddle::inference::anakin::ElementwiseMulOpConverter<
    ::anakin::saber::NV, ::anakin::Precision::FP32>;
using eletmul_nv_int8 = ::paddle::inference::anakin::ElementwiseMulOpConverter<
    ::anakin::saber::NV, ::anakin::Precision::INT8>;

REGISTER_CUDA_ANAKIN_OP_CONVERTER(elementwise_add, elet_nv_fp32);
REGISTER_CUDA_INT8_ANAKIN_OP_CONVERTER(elementwise_add, elet_nv_int8);
REGISTER_CUDA_ANAKIN_OP_CONVERTER(elementwise_mul, eletmul_nv_fp32);
REGISTER_CUDA_INT8_ANAKIN_OP_CONVERTER(elementwise_mul, eletmul_nv_int8);

89
#endif
90 91 92 93 94 95 96 97 98 99 100 101 102
using elet_cpu_fp32 = ::paddle::inference::anakin::ElementwiseAddOpConverter<
    ::anakin::saber::X86, ::anakin::Precision::FP32>;
using elet_cpu_int8 = ::paddle::inference::anakin::ElementwiseAddOpConverter<
    ::anakin::saber::X86, ::anakin::Precision::INT8>;
using eletmul_cpu_fp32 = ::paddle::inference::anakin::ElementwiseMulOpConverter<
    ::anakin::saber::X86, ::anakin::Precision::FP32>;
using eletmul_cpu_int8 = ::paddle::inference::anakin::ElementwiseMulOpConverter<
    ::anakin::saber::X86, ::anakin::Precision::INT8>;

REGISTER_CPU_ANAKIN_OP_CONVERTER(elementwise_add, elet_cpu_fp32);
REGISTER_CPU_INT8_ANAKIN_OP_CONVERTER(elementwise_add, elet_cpu_int8);
REGISTER_CPU_ANAKIN_OP_CONVERTER(elementwise_mul, eletmul_cpu_fp32);
REGISTER_CPU_INT8_ANAKIN_OP_CONVERTER(elementwise_mul, eletmul_cpu_int8);