uniform_random_op.cc 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11 12 13
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
14 15
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Y
Yu Yang 已提交
16 17 18

namespace paddle {
namespace operators {
Y
Yu Yang 已提交
19

Q
qijun 已提交
20 21 22 23
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
Y
Yu Yang 已提交
24
class CPUUniformRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
25
 public:
Q
Qiao Longfei 已提交
26
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
Yancey1989 已提交
27 28 29 30 31 32 33 34 35 36 37
    framework::Tensor* tensor(nullptr);
    auto out_var = ctx.OutputVar("Out");
    if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
    } else if (out_var->IsType<framework::SelectedRows>()) {
      auto shape = ctx.Attr<std::vector<int>>("shape");
      tensor = out_var->GetMutable<framework::SelectedRows>()->mutable_value();
      tensor->Resize(framework::make_ddim(shape));
    } else {
      PADDLE_THROW("Only support SelectedRows and Tensor");
    }
Q
Qiao Longfei 已提交
38 39
    T* data = tensor->mutable_data<T>(ctx.GetPlace());
    unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
Q
qijun 已提交
40 41 42 43 44 45
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::uniform_real_distribution<T> dist(
Q
Qiao Longfei 已提交
46 47
        static_cast<T>(ctx.Attr<float>("min")),
        static_cast<T>(ctx.Attr<float>("max")));
48
    int64_t size = tensor->numel();
Q
qijun 已提交
49
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
50 51 52 53 54
      data[i] = dist(engine);
    }
  }
};

Y
Yu Yang 已提交
55
class UniformRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
56 57 58
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

59
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
60 61
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of UniformRandomOp should not be null.");
62

Q
Qiao Longfei 已提交
63 64 65
    PADDLE_ENFORCE(
        ctx->Attrs().Get<float>("min") < ctx->Attrs().Get<float>("max"),
        "uniform_random's min must less then max");
Q
QI JUN 已提交
66
    auto& shape = ctx->Attrs().Get<std::vector<int>>("shape");
Q
qijun 已提交
67
    std::vector<int64_t> temp;
Q
QI JUN 已提交
68 69
    temp.reserve(shape.size());
    for (auto dim : shape) {
Q
qijun 已提交
70 71
      temp.push_back(static_cast<int64_t>(dim));
    }
Q
Qiao Longfei 已提交
72
    ctx->SetOutputDim("Out", framework::make_ddim(temp));
Y
Yu Yang 已提交
73
  }
Y
Yu Yang 已提交
74

75
 protected:
76
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
77
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
78
    return framework::OpKernelType(
79
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
Q
QI JUN 已提交
80
        ctx.GetPlace());
Y
Yu Yang 已提交
81
  }
Y
Yu Yang 已提交
82 83
};

Y
Yu Yang 已提交
84
class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
85
 public:
86
  UniformRandomOpMaker(OpProto* proto, OpAttrChecker* op_checker)
Y
Yu Yang 已提交
87
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
88 89 90 91
    AddOutput("Out", "(Tensor) The output tensor of uniform random op");
    AddComment(R"DOC(
Uniform random operator.

92
This operator initializes a tensor with random values sampled from a
93 94
uniform distribution.

Y
Yu Yang 已提交
95
)DOC");
96 97 98 99 100 101 102 103 104 105
    AddAttr<std::vector<int>>("shape",
                              "(vector<int>) The shape of the output tensor");
    AddAttr<float>("min",
                   "(float, default -1.0) "
                   "Minimum value of uniform random")
        .SetDefault(-1.0f);
    AddAttr<float>("max",
                   "(float, default 1.0) "
                   "Maximun value of uniform random")
        .SetDefault(1.0f);
Q
qijun 已提交
106
    AddAttr<int>("seed",
107 108
                 "(int, default 0) "
                 "Random seed used for generating samples. "
109 110 111
                 "0 means use a seed generated by the system."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
Q
qijun 已提交
112
        .SetDefault(0);
F
fengjiayi 已提交
113
    AddAttr<int>("dtype", "(int, default 5(FP32)) Output tensor data type")
114
        .SetDefault(framework::proto::VarType::FP32);
Y
Yu Yang 已提交
115 116 117 118 119
  }
};
}  // namespace operators
}  // namespace paddle

F
fengjiayi 已提交
120 121
REGISTER_OP_WITHOUT_GRADIENT(uniform_random, paddle::operators::UniformRandomOp,
                             paddle::operators::UniformRandomOpMaker);
Q
qijun 已提交
122
REGISTER_OP_CPU_KERNEL(uniform_random,
123 124
                       paddle::operators::CPUUniformRandomKernel<float>,
                       paddle::operators::CPUUniformRandomKernel<double>);
125 126 127
REGISTER_OP_CPU_KERNEL(uniform_random_batch_size_like,
                       paddle::operators::CPUUniformRandomKernel<float>,
                       paddle::operators::CPUUniformRandomKernel<double>);