nn.py 17.4 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
from ..framework import Variable, OpProtoHolder
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant
25
__all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding']
M
minqiyang 已提交
26 27


X
Xin Pan 已提交
28
class Conv2D(layers.Layer):
M
minqiyang 已提交
29
    def __init__(self,
X
Xin Pan 已提交
30
                 name_scope,
M
minqiyang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 use_cudnn=True,
                 act=None,
                 param_attr=None,
                 bias_attr=None,
                 dtype=core.VarDesc.VarType.FP32):
        assert param_attr is not False, "param_attr should not be False here."
X
Xin Pan 已提交
44
        super(Conv2D, self).__init__(name_scope, dtype=dtype)
M
minqiyang 已提交
45

X
Xin Pan 已提交
46
        # TODO(minqiyang): Move this to the top.
M
minqiyang 已提交
47 48
        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(
X
Xin Pan 已提交
49
            self.full_name(),
M
minqiyang 已提交
50 51 52
            param_attr=param_attr,
            bias_attr=bias_attr,
            dtype=dtype,
M
minqiyang 已提交
53
            act=act)
M
minqiyang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
        self._num_channels = num_channels
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'

        if groups is None:
            num_filter_channels = num_channels
        else:
            if num_channels % groups != 0:
                raise ValueError("num_channels must be divisible by groups.")
            num_filter_channels = num_channels // groups
        filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
        filter_shape = [num_filters, int(num_filter_channels)] + filter_size

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        if self._use_cudnn:
            self._helper.create_variable(
                name="kCUDNNFwdAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdDataAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdFilterAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)

M
minqiyang 已提交
103 104
        self._bias_param = self._helper.create_parameter(
            attr=self._helper.bias_attr,
M
minqiyang 已提交
105
            shape=[num_filters],
M
minqiyang 已提交
106 107
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
108 109

    def forward(self, input):
M
minqiyang 已提交
110 111 112
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
113 114 115 116 117 118
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
119
            outputs={"Output": pre_bias},
M
minqiyang 已提交
120 121 122 123 124 125 126 127 128
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

M
minqiyang 已提交
129 130
        pre_act = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
M
minqiyang 已提交
131

M
minqiyang 已提交
132 133 134 135 136 137 138
        self._helper.append_op(
            type='elementwise_add',
            inputs={'X': [pre_bias],
                    'Y': [self._bias_param]},
            outputs={'Out': [pre_act]},
            attrs={'axis': 1})

M
minqiyang 已提交
139
        # Currently, we don't support inplace in imperative mode
M
minqiyang 已提交
140
        return self._helper.append_activation(pre_act)
M
minqiyang 已提交
141 142


X
Xin Pan 已提交
143
class Pool2D(layers.Layer):
M
minqiyang 已提交
144
    def __init__(self,
X
Xin Pan 已提交
145
                 name_scope,
M
minqiyang 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
                 exclusive=True,
                 dtype=core.VarDesc.VarType.FP32):
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

X
Xin Pan 已提交
168
        super(Pool2D, self).__init__(name_scope, dtype=dtype)
M
minqiyang 已提交
169

M
minqiyang 已提交
170
        from ..layer_helper import LayerHelper
X
Xin Pan 已提交
171
        self._helper = LayerHelper(self.full_name(), dtype=dtype)
M
minqiyang 已提交
172

M
minqiyang 已提交
173 174 175 176 177 178 179 180 181 182 183 184
        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
185 186
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
187 188 189
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
190
            outputs={"Out": pool_out},
M
minqiyang 已提交
191 192 193 194 195 196 197 198 199 200 201
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
202
        return pool_out
M
minqiyang 已提交
203 204


X
Xin Pan 已提交
205
class FC(layers.Layer):
M
minqiyang 已提交
206
    def __init__(self,
X
Xin Pan 已提交
207
                 name_scope,
M
minqiyang 已提交
208
                 size,
M
minqiyang 已提交
209
                 param_attr=None,
M
minqiyang 已提交
210
                 bias_attr=None,
M
minqiyang 已提交
211
                 num_flatten_dims=1,
X
Xin Pan 已提交
212
                 dtype=core.VarDesc.VarType.FP32,
X
Xin Pan 已提交
213 214
                 act=None):
        super(FC, self).__init__(name_scope)
M
minqiyang 已提交
215

M
minqiyang 已提交
216
        self._size = size
M
minqiyang 已提交
217 218
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
M
minqiyang 已提交
219
        from ..layer_helper import LayerHelper
M
minqiyang 已提交
220
        self._helper = LayerHelper(
X
Xin Pan 已提交
221
            self.full_name(),
M
minqiyang 已提交
222 223
            param_attr=param_attr,
            bias_attr=bias_attr,
X
Xin Pan 已提交
224
            act=act)
M
minqiyang 已提交
225 226 227 228 229

    def _build_once(self, input):
        input_shape = input.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
M
minqiyang 已提交
230
        ] + [self._size]
M
minqiyang 已提交
231 232 233 234 235
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
236 237 238 239 240 241 242 243 244 245

        if self._helper.bias_attr:
            size = list([self._size])
            self._b = self._helper.create_parameter(
                attr=self._helper.bias_attr,
                shape=size,
                dtype=self._dtype,
                is_bias=True)
        else:
            self._b = None
M
minqiyang 已提交
246 247

    def forward(self, input):
M
minqiyang 已提交
248
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
249 250 251 252
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._w},
M
minqiyang 已提交
253
            outputs={"Out": tmp},
M
minqiyang 已提交
254 255 256 257 258
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

M
minqiyang 已提交
259
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
260 261
        self._helper.append_op(
            type="sum",
M
minqiyang 已提交
262
            inputs={"X": [tmp]},
M
minqiyang 已提交
263
            outputs={"Out": pre_bias},
M
minqiyang 已提交
264
            attrs={"use_mkldnn": False})
M
minqiyang 已提交
265

266 267 268 269 270 271 272 273 274 275 276
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
M
minqiyang 已提交
277
        # Currently, we don't support inplace in imperative mode
M
minqiyang 已提交
278
        return self._helper.append_activation(pre_activation)
M
minqiyang 已提交
279 280 281 282


class BatchNorm(layers.Layer):
    def __init__(self,
X
Xin Pan 已提交
283
                 name_scope,
M
minqiyang 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 dtype=core.VarDesc.VarType.FP32,
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=False,
                 fuse_with_relu=False,
                 use_global_stats=False):
X
Xin Pan 已提交
299
        super(BatchNorm, self).__init__(name_scope)
M
minqiyang 已提交
300 301 302 303 304

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(
X
Xin Pan 已提交
305
            self.full_name(),
M
minqiyang 已提交
306 307 308
            param_attr=param_attr,
            bias_attr=bias_attr,
            act=act)
M
minqiyang 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322

        if dtype == core.VarDesc.VarType.FP16:
            self._dtype = core.VarDesc.VarType.FP32
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
        self._scale = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
M
minqiyang 已提交
323
        if use_global_stats and self._helper.param_attr.learning_rate == 0.:
M
minqiyang 已提交
324
            self._scale._stop_gradient = True
M
minqiyang 已提交
325 326 327 328 329 330

        self._bias = self._helper.create_parameter(
            attr=self._helper.bias_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
331
        if use_global_stats and self._helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
332
            self._bias._stop_gradient = True
M
minqiyang 已提交
333 334 335 336 337 338 339 340 341

        self._mean = self._helper.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
M
minqiyang 已提交
342
        self._mean._stop_gradient = True
M
minqiyang 已提交
343 344 345 346 347 348 349 350 351

        self._variance = self._helper.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
M
minqiyang 已提交
352
        self._variance._stop_gradient = True
M
minqiyang 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

        self._in_place = in_place
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
        self._fuse_with_relu = fuse_with_relu
        self._use_global_stats = use_global_stats

    def _build_once(self, input):
        pass

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
372
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
373
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
374
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
375
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
376
            self._dtype)
M
minqiyang 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
                "use_global_stats": self._use_global_stats
            })

M
minqiyang 已提交
403
        # Currently, we don't support inplace in imperative mode
M
minqiyang 已提交
404
        return self._helper.append_activation(batch_norm_out)
405 406


407 408 409 410 411 412 413 414 415 416 417 418
class Embedding(layers.Layer):
    """
    **Embedding Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    All the input variables are passed in as local variables to the LayerHelper
    constructor.

    Args:
X
Xin Pan 已提交
419
        name_scope: See base class.
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
        is_distributed(bool): Whether to run lookup table from remote parameter server.
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc

    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          dict_size = len(dataset.ids)
          input = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
          embedding = fluid.imperative.Embedding(size=[dict_size, 16])
          fc = embedding(input)
    """

446
    def __init__(self,
X
Xin Pan 已提交
447
                 name_scope,
448 449 450 451 452 453 454
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):

X
Xin Pan 已提交
455
        super(Embedding, self).__init__(name_scope)
456 457 458 459 460
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed

        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
461
            size[0] + padding_idx)
462 463 464

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
465
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
466 467 468 469
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

        from ..layer_helper import LayerHelper
X
Xin Pan 已提交
470
        self._helper = LayerHelper(self.full_name(), param_attr=param_attr)
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        self._w = self._helper.create_parameter(
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='lookup_table',
            inputs={'Ids': input,
                    'W': self._w},
            outputs={'Out': out},
            attrs={
                'is_sparse': self._is_sparse,
                'is_distributed': self._is_distributed,
                'remote_prefetch': self._remote_prefetch,
                'padding_idx': self._padding_idx
            })

        return out