device_context.cc 14.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/platform/cuda_device_guard.h"
22
#endif
23

Q
qijun 已提交
24 25 26
namespace paddle {
namespace platform {

D
dzhwinter 已提交
27 28
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
29
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
30 31 32
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
M
minqiyang 已提交
33 34 35
        "Place %s is not supported, Please re-compile with WITH_GPU "
        "option",
        place);
D
dzhwinter 已提交
36
  }
37
  return it->second.get().get();
D
dzhwinter 已提交
38 39
}

40 41 42 43 44 45 46 47 48 49 50
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
51 52
}

D
dzhwinter 已提交
53 54 55
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
56
  std::set<Place> set;
Y
Yu Yang 已提交
57 58 59 60 61 62
  for (auto& p : places) {
    set.insert(p);
  }

  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
63
#ifdef PADDLE_WITH_MKLDNN
64
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
65
#else
66
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
67
#endif
Y
Yu Yang 已提交
68
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
69
#ifdef PADDLE_WITH_CUDA
70
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
71 72
#else
      PADDLE_THROW(
D
dzhwinter 已提交
73
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
74
          "option");
C
chengduoZH 已提交
75 76 77
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
78 79
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
80 81 82 83
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
84 85 86 87 88
#endif
    }
  }
}

89 90 91 92 93 94 95
DeviceTemporaryAllocator* DeviceTemporaryAllocator::allocators = nullptr;

#ifdef PADDLE_WITH_CUDA
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::Place& place, const cudaStream_t& stream) {
  PADDLE_ENFORCE(platform::is_gpu_place(place));
  auto place_stream = std::make_pair(place, stream);
96 97 98 99 100 101 102 103 104 105 106 107
  std::unique_lock<std::mutex> lock(mtx_);
  auto it = device_allocator_.find(place_stream);
  if (it == device_allocator_.end()) {
    auto tmp_allocator = new TemporaryAllocator(place);
    tmp_allocator->SetCallback([stream]() {
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
      PADDLE_ENFORCE(cudaGetLastError());
    });
    device_allocator_[place_stream].reset(tmp_allocator);
    return *tmp_allocator;
  } else {
    return *it->second;
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  }
}

template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::CUDADeviceContext& dev_ctx) {
  return Get(dev_ctx.GetPlace(), dev_ctx.stream());
}
#endif

template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::CPUDeviceContext& dev_ctx) {
  return cpu_allocator_;
}

platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::Place& place) {
  PADDLE_ENFORCE(platform::is_cpu_place(place), "You should pass CPUPlace");
  return cpu_allocator_;
}

130 131 132 133
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
134
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
135 136 137 138 139 140 141
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
142
Place CPUDeviceContext::GetPlace() const { return place_; }
143

144
#ifdef PADDLE_WITH_CUDA
145

Q
init  
qijun 已提交
146 147 148 149 150 151 152
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
153
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
154 155 156 157 158 159 160 161 162 163 164 165
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
166 167 168
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
Y
Yu Yang 已提交
169 170
    auto buf = paddle::memory::Alloc(place_, num_bytes,
                                     memory::Allocator::kScratchpad);
171
    void* retv = buf->ptr();
S
sneaxiy 已提交
172 173 174 175
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
176
    return retv;
Q
init  
qijun 已提交
177 178
  }

S
sneaxiy 已提交
179 180 181 182 183 184
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
      PADDLE_ENFORCE(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
205
  CUDAPlace place_;
Q
init  
qijun 已提交
206 207
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
208
  mutable void* scratch_;
Q
init  
qijun 已提交
209
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
210
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
211
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
212 213
};

S
sneaxiy 已提交
214
CudnnHolder::CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
Y
Yu Yang 已提交
215
    : workspace_(nullptr), stream_(stream), place_(place) {
S
sneaxiy 已提交
216 217 218
  PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
  PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
}
219

S
sneaxiy 已提交
220 221
CudnnHolder::~CudnnHolder() {
  PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
S
sneaxiy 已提交
222
}
223

S
sneaxiy 已提交
224
void CudnnHolder::ReallocateWorkspace(size_t required_workspace_len) {
Y
Yu Yang 已提交
225
  if (required_workspace_len <= WorkspaceSize()) {
S
sneaxiy 已提交
226
    return;
Y
Yu Yang 已提交
227
  }
S
sneaxiy 已提交
228 229 230
  if (workspace_ != nullptr) {
    // Maybe someone is using the current workspace
    PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
Y
Yu Yang 已提交
231
    workspace_.reset();
232
  }
Y
Yu Yang 已提交
233 234
  workspace_ = paddle::memory::Alloc(place_, required_workspace_len,
                                     paddle::memory::Allocator::kScratchpad);
S
sneaxiy 已提交
235
}
236 237 238

CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
    : place_(place), cudnn_holder_(nullptr) {
Y
Yu Yang 已提交
239
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
240 241 242
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
Q
init  
qijun 已提交
243 244 245
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
246
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
247 248 249 250 251 252 253 254 255
  cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH));

  if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
    cublas_tensor_core_handle_.reset(
        new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH));
#endif
  }

D
dzhwinter 已提交
256
  if (dynload::HasCUDNN()) {
257
    cudnn_holder_.reset(new CudnnHolder(&stream_, place));
D
dzhwinter 已提交
258
  }
S
sneaxiy 已提交
259

C
chengduo 已提交
260 261 262
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

263 264
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
C
chengduo 已提交
265
                          << ", Driver API Version: " << driver_version_ / 1000
266
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
267 268 269
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
270 271 272 273
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
                          << (cudnn_dso_ver % 100) / 10 << ".";
S
sneaxiy 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

  {
    // Check CUDA/CUDNN version compatiblity
    auto local_cuda_version = runtime_version_ / 100;
    auto compile_cuda_version = CUDA_VERSION / 100;
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }

    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = cudnn_dso_ver / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
S
sneaxiy 已提交
294
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
S
sneaxiy 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
    }
  }

S
sneaxiy 已提交
308
  callback_manager_.reset(new StreamCallbackManager(stream_));
309 310 311 312
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
313
  Wait();
S
sneaxiy 已提交
314
  WaitStreamCallback();
315 316
  cublas_handle_.reset();
  cublas_tensor_core_handle_.reset();
317 318
  eigen_stream_.reset();
  eigen_device_.reset();
Q
init  
qijun 已提交
319
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
320 321
}

L
liaogang 已提交
322
Place CUDADeviceContext::GetPlace() const { return place_; }
323

L
liaogang 已提交
324
void CUDADeviceContext::Wait() const {
325 326
  auto& allocator =
      DeviceTemporaryAllocator::Instance().Get<CUDADeviceContext>(*this);
327
  allocator.Release([this]() {
328 329 330
    PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
    PADDLE_ENFORCE(cudaGetLastError());
  });
331 332
}

K
Kexin Zhao 已提交
333
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
334
  return compute_capability_;
K
Kexin Zhao 已提交
335 336
}

337
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
338
  return multi_process_ * max_threads_per_mp_;
339 340
}

341 342 343 344
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

345 346
bool CUDADeviceContext::tensor_core_available() const {
  return cublas_tensor_core_handle_ != nullptr;
S
sneaxiy 已提交
347 348
}

349 350 351 352
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return cudnn_holder_->cudnn_handle();
}

S
sneaxiy 已提交
353 354
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
  return CudnnWorkspaceHandle(cudnn_holder_.get());
355
}
356

357
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
358

C
chengduoZH 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
373
#endif
Q
qijun 已提交
374

T
tensor-tang 已提交
375 376
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
377 378 379
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
380 381
}

S
Sylwester Fraczek 已提交
382 383 384 385 386 387 388 389
namespace {
// Current thread's id.
thread_local int cur_thread_id = 0;
}

void set_cur_thread_id(int tid) { cur_thread_id = tid; }
int get_cur_thread_id(void) { return cur_thread_id; }

390 391
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
392 393 394 395
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;

  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
396

397
  std::lock_guard<std::mutex> lock(*p_mutex_.get());
T
tensor-tang 已提交
398

399 400 401 402 403 404 405
  // Find KeyBlob for current thread
  auto map_it = pMap->find(tid);

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*pMap)[tid] = pBlob;
406
  } else {
407
    pBlob = map_it->second;
408
  }
T
tensor-tang 已提交
409

410 411 412 413 414 415 416 417 418 419
  // Find Key in found (or newly created) KeyBlob
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) {
    (*pBlob)[name] = data;  // create new blob
  } else {
    key_it->second = data;  // set data to existing blob
  }

  // lock will be automatically released when out of scope
420
  return;
T
tensor-tang 已提交
421 422
}

423 424
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
425 426
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
427

428
  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
429

430 431 432 433 434 435 436 437 438 439 440
  std::lock_guard<std::mutex> lock(*p_mutex_.get());

  // Find KeyBlob for current thread firstly
  auto map_it = pMap->find(tid);
  if (map_it == pMap->end()) return nullptr;
  pBlob = map_it->second;

  // Find Blob via name
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) return nullptr;
441

442 443
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
444 445 446 447
}

#endif

Q
qijun 已提交
448
}  // namespace platform
Q
qijun 已提交
449
}  // namespace paddle