gather_op.h 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
18 19
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/scatter.h"
Z
zchen0211 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

Z
zchen0211 已提交
26
template <typename T>
Y
Yu Yang 已提交
27
class GatherOpKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
28
 public:
Z
zchen0211 已提交
29
  void Compute(const framework::ExecutionContext &ctx) const override {
30 31 32
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("This kernel only runs on CPU."));
Z
zchen0211 已提交
33 34 35 36 37

    auto *x = ctx.Input<Tensor>("X");
    auto *index = ctx.Input<Tensor>("Index");
    auto *output = ctx.Output<Tensor>("Out");

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    if (ctx.HasInput("Axis")) {
      const Tensor *axis = ctx.Input<Tensor>("Axis");
      const auto &index_type = index->type();
      const auto &axis_type = axis->type();
      auto place = ctx.GetPlace();
      if (index_type == framework::proto::VarType::INT32 &&
          axis_type == framework::proto::VarType::INT32) {
        GatherV2Function<T, int32_t, int32_t>(x, index, axis, output, place);
      }
      if (index_type == framework::proto::VarType::INT32 &&
          axis_type == framework::proto::VarType::INT64) {
        GatherV2Function<T, int32_t, int64_t>(x, index, axis, output, place);
      }
      if (index_type == framework::proto::VarType::INT64 &&
          axis_type == framework::proto::VarType::INT32) {
        GatherV2Function<T, int64_t, int32_t>(x, index, axis, output, place);
      }
      if (index_type == framework::proto::VarType::INT64 &&
          axis_type == framework::proto::VarType::INT64) {
        GatherV2Function<T, int64_t, int64_t>(x, index, axis, output, place);
      }
      return;
    }

Z
zchen0211 已提交
62
    output->mutable_data<T>(ctx.GetPlace());
63
    if (x->numel() == 0) return;
64 65 66 67

    const auto &index_type = index->type();
    bool index_type_match = index_type == framework::proto::VarType::INT32 ||
                            index_type == framework::proto::VarType::INT64;
68 69 70 71 72 73 74 75 76
    PADDLE_ENFORCE_EQ(index_type_match, true,
                      platform::errors::InvalidArgument(
                          "Index holds the wrong type, it holds [%s],"
                          "but desires to be [%s] or [%s].",
                          paddle::framework::DataTypeToString(index_type),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT32),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT64)));
77 78 79 80 81
    if (index_type == framework::proto::VarType::INT32) {
      CPUGather<T, int>(ctx.device_context(), *x, *index, output);
    } else if (index_type == framework::proto::VarType::INT64) {
      CPUGather<T, int64_t>(ctx.device_context(), *x, *index, output);
    }
Z
zchen0211 已提交
82 83 84
  }
};

Z
zchen0211 已提交
85
template <typename T>
Y
Yu Yang 已提交
86
class GatherGradientOpKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
87
 public:
Z
zchen0211 已提交
88
  void Compute(const framework::ExecutionContext &ctx) const override {
89 90 91
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("This kernel only runs on CPU."));
Z
zchen0211 已提交
92

93
    auto *index = ctx.Input<Tensor>("Index");
Z
zchen0211 已提交
94 95
    auto *dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dO = ctx.Input<Tensor>(framework::GradVarName("Out"));
Z
zchen0211 已提交
96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    if (ctx.HasInput("Axis")) {
      const Tensor *axis = ctx.Input<Tensor>("Axis");
      const auto &index_type = index->type();
      const auto &axis_type = axis->type();
      auto place = ctx.GetPlace();
      if (index_type == framework::proto::VarType::INT32 &&
          axis_type == framework::proto::VarType::INT32) {
        GatherV2GradFunction<T, int32_t, int32_t>(dO, index, axis, dX, place);
      }
      if (index_type == framework::proto::VarType::INT32 &&
          axis_type == framework::proto::VarType::INT64) {
        GatherV2GradFunction<T, int32_t, int64_t>(dO, index, axis, dX, place);
      }
      if (index_type == framework::proto::VarType::INT64 &&
          axis_type == framework::proto::VarType::INT32) {
        GatherV2GradFunction<T, int64_t, int32_t>(dO, index, axis, dX, place);
      }
      if (index_type == framework::proto::VarType::INT64 &&
          axis_type == framework::proto::VarType::INT64) {
        GatherV2GradFunction<T, int64_t, int64_t>(dO, index, axis, dX, place);
      }
      return;
    }

Z
zchen0211 已提交
121
    dX->mutable_data<T>(ctx.GetPlace());
Z
zchen0211 已提交
122
    auto dxt = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
123 124
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
Z
zchen0211 已提交
125
    dxt.device(place) = dxt.constant(static_cast<T>(0));
126
    if (dO->numel() == 0) return;
127
    bool overwrite = ctx.Attr<bool>("overwrite");
128 129 130 131

    const auto &index_type = index->type();
    bool index_type_match = index_type == framework::proto::VarType::INT32 ||
                            index_type == framework::proto::VarType::INT64;
132 133 134 135 136 137 138 139 140
    PADDLE_ENFORCE_EQ(index_type_match, true,
                      platform::errors::InvalidArgument(
                          "Index holds the wrong type, it holds [%s],"
                          "but desires to be [%s] or [%s].",
                          paddle::framework::DataTypeToString(index_type),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT32),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT64)));
141
    if (index_type == framework::proto::VarType::INT32) {
142 143 144 145 146
      if (overwrite) {
        ScatterAssign<T, int32_t>(ctx.device_context(), *dO, *index, dX);
      } else {
        ScatterAssignAdd<T, int32_t>(ctx, *dO, *index, dX);
      }
147
    } else if (index_type == framework::proto::VarType::INT64) {
148 149 150 151 152
      if (overwrite) {
        ScatterAssign<T, int64_t>(ctx.device_context(), *dO, *index, dX);
      } else {
        ScatterAssignAdd<T, int64_t>(ctx, *dO, *index, dX);
      }
153
    }
Z
zchen0211 已提交
154 155 156 157 158
  }
};

}  // namespace operators
}  // namespace paddle