PyDecodejpeg.cpp 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <Python.h>
#include <time.h>
#include <vector>
#include <sys/time.h>
#include <unistd.h>
#include <glog/logging.h>
#include <numpy/arrayobject.h>

#include <boost/python.hpp>

#include "DataTransformer.h"

using namespace boost::python;
using namespace std;

/**
 * DecodeJpeg is an image processing API for interfacing Python and C++
 * code DataTransformer, which used OpenCV and multi-threads to accelerate
 * image processing.
 * The Boost Python Library is used to wrap C++ interfaces.
 */

class DecodeJpeg {
public:
  /**
   * The constructor will create and nitialize an object of DataTransformer.
   */
  DecodeJpeg(int threadNum,
             int capacity,
             bool isTest,
             bool isColor,
             int resize_min_size,
             int cropSizeH,
             int cropSizeW,
             PyObject* meanValues) {
    int channel = isColor ? 3 : 1;
    bool isEltMean = false;
    bool isChannelMean = false;
    float* mean = NULL;
    if (meanValues || meanValues != Py_None) {
      if (!PyArray_Check(meanValues)) {
        LOG(FATAL) << "Object is not a numpy array";
      }
      pyTypeCheck(meanValues);
      int size = PyArray_SIZE(meanValues);
      isChannelMean = (size == channel) ? true : false;
      isEltMean = (size == channel * cropSizeH * cropSizeW) ? true : false;
      CHECK(isChannelMean != isEltMean);
      mean = (float*)PyArray_DATA(meanValues);
    }
    tfhandlerPtr_ = std::make_shared<DataTransformer>(threadNum,
                                                      capacity,
                                                      isTest,
                                                      isColor,
                                                      cropSizeH,
                                                      cropSizeW,
                                                      resize_min_size,
                                                      isEltMean,
                                                      isChannelMean,
                                                      mean);
  }

  ~DecodeJpeg() {}

  /**
   * @brief This function is used to parse the Python object and convert
   *        the data to C++ format. Then it called the function of
   *        DataTransformer to start image processing.
   * @param pysrc    The input image list with string type.
   * @param pylabel  The input label of image.
   *                 It's type is numpy.array with int32.
   */
  void start(boost::python::list& pysrc, PyObject* pydlen, PyObject* pylabel) {
    vector<char*> data;
    int num = len(pysrc);
    for (int t = 0; t < num; ++t) {
      char* src = boost::python::extract<char*>(pysrc[t]);
      data.push_back(src);
    }
    int* dlen = (int*)PyArray_DATA(pydlen);
    int* dlabels = (int*)PyArray_DATA(pylabel);
    tfhandlerPtr_->start(data, dlen, dlabels);
  }

  /**
   * @brief Return one processed data.
   * @param pytrg    The processed image.
   * @param pylabel  The label of processed image.
   */
  void get(PyObject* pytrg, PyObject* pylab) {
    pyWritableCheck(pytrg);
    pyWritableCheck(pylab);
    pyContinuousCheck(pytrg);
    pyContinuousCheck(pylab);
    float* data = (float*)PyArray_DATA(pytrg);
    int* label = (int*)PyArray_DATA(pylab);
    tfhandlerPtr_->obtain(data, label);
  }

  /**
   * @brief An object of DataTransformer, which is used to call
   *        the image processing funtions.
   */
  std::shared_ptr<DataTransformer> tfhandlerPtr_;

private:
  /**
   * @brief Check whether the type of PyObject is valid or not.
   */
  void pyTypeCheck(const PyObject* o) {
    int typenum = PyArray_TYPE(o);

    // clang-format off
    int type =
        typenum == NPY_UBYTE ? CV_8U :
        typenum == NPY_BYTE ? CV_8S :
        typenum == NPY_USHORT ? CV_16U :
        typenum == NPY_SHORT ? CV_16S :
        typenum == NPY_INT || typenum == NPY_LONG ? CV_32S :
        typenum == NPY_FLOAT ? CV_32F :
        typenum == NPY_DOUBLE ? CV_64F : -1;
    // clang-format on

    if (type < 0) {
      LOG(FATAL) << "toMat: Data type = " << type << " is not supported";
    }
  }

  /**
   * @brief Check whether the PyObject is writable or not.
   */
  void pyWritableCheck(PyObject* o) { CHECK(PyArray_ISWRITEABLE(o)); }

  /**
   * @brief Check whether the PyObject is c-contiguous or not.
   */
  void pyContinuousCheck(PyObject* o) { CHECK(PyArray_IS_C_CONTIGUOUS(o)); }
};

/**
 * @brief Initialize the Python interpreter and numpy.
 */
static void initPython() {
  Py_Initialize();
  PyOS_sighandler_t sighandler = PyOS_getsig(SIGINT);
  import_array();
  PyOS_setsig(SIGINT, sighandler);
}

/**
 * Use Boost.Python to expose C++ interface to Python.
 */
BOOST_PYTHON_MODULE(DeJpeg) {
  initPython();
  class_<DecodeJpeg>("DecodeJpeg",
                     init<int, int, bool, bool, int, int, int, PyObject*>())
      .def("start", &DecodeJpeg::start)
      .def("get", &DecodeJpeg::get);
};