api_impl.cc 10.4 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
26
#include "paddle/fluid/inference/api/helper.h"
27
#include "paddle/fluid/platform/cpu_helper.h"
28 29 30
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
31
DECLARE_int32(paddle_num_threads);
X
Xin Pan 已提交
32 33 34

namespace paddle {
namespace {
D
dzhwinter 已提交
35
using paddle::inference::Timer;
X
Xin Pan 已提交
36 37 38 39 40 41 42 43 44

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace

45 46 47 48
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
49
      if (feeds_.size() <= static_cast<size_t>(idx)) {
50 51 52 53 54 55
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
56
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
57 58 59 60 61 62 63
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
64 65
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
X
Xin Pan 已提交
66
  VLOG(3) << "Predictor::init()";
D
dzhwinter 已提交
67
#if !defined(_WIN32)
68 69 70 71 72 73 74 75
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }
D
dzhwinter 已提交
76
#endif
77

P
peizhilin 已提交
78 79 80 81
  // windows has no support for openblas multi-thread
#ifdef _WIN32
	FLAGS_paddle_num_threads = 1;
#endif
82 83 84
  // no matter with or without MKLDNN
  paddle::platform::SetNumThreads(FLAGS_paddle_num_threads);

Y
Yan Chunwei 已提交
85
  if (config_.use_gpu) {
X
Xin Pan 已提交
86 87 88 89
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
90 91 92
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
93
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
94 95 96 97 98
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }

X
Xin Pan 已提交
99 100 101 102 103 104
  executor_.reset(new paddle::framework::Executor(place_));

  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
105 106
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
107 108 109 110 111 112 113
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
Y
Yan Chunwei 已提交
114
    LOG(ERROR) << "fail to load inference model from " << config_.model_dir;
X
Xin Pan 已提交
115 116
    return false;
  }
117

X
Xin Pan 已提交
118
  ctx_ = executor_->Prepare(*inference_program_, 0);
119 120
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
121

X
Xin Pan 已提交
122
  // Get the feed_target_names and fetch_target_names
123
  PrepareFeedFetch();
X
Xin Pan 已提交
124 125 126
  return true;
}

127
NativePaddlePredictor::~NativePaddlePredictor() {
D
dzhwinter 已提交
128
#if !defined(_WIN32)
129 130 131 132
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
D
dzhwinter 已提交
133
#endif
134 135 136
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
137
}
138

Y
Yan Chunwei 已提交
139
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
140 141
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
X
Xin Pan 已提交
142 143 144 145
  VLOG(3) << "Predictor::predict";
  Timer timer;
  timer.tic();
  // set feed variable
146
  std::vector<framework::LoDTensor> feeds;
147 148
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
149 150 151 152 153
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
154
  VLOG(4) << "Run prepared context";
155 156
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
157
                                false /* don't create variable each time */);
158
  VLOG(4) << "Finish prepared context";
159 160
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
161
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
162 163 164
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
165 166 167 168

  // Fix TensorArray reuse not cleaned bug.
  tensor_array_batch_cleaner_.CollectTensorArrays(scope_.get());
  tensor_array_batch_cleaner_.ResetTensorArray();
X
Xin Pan 已提交
169 170 171
  return true;
}

Y
Yan Chunwei 已提交
172
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
173
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
174 175
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

176
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
177
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
178 179
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
180 181 182 183
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
184 185
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
186
#endif
X
Xin Pan 已提交
187 188
}

Y
Yan Chunwei 已提交
189
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
190
                                    framework::Scope *scope) {
X
Xin Pan 已提交
191
  VLOG(3) << "Predictor::set_feed";
192
  if (inputs.size() != feeds_.size()) {
193 194
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
X
Xin Pan 已提交
195 196
    return false;
  }
197
  for (size_t i = 0; i < inputs.size(); ++i) {
198 199
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
200 201
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
202
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
203
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
204
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
205 206 207 208 209 210
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
211
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
212
                inputs[i].data.length());
Y
Yan Chunwei 已提交
213 214 215 216 217 218
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
219 220
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
221
      idx = feed_names_[inputs[i].name];
222 223 224 225
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
226 227 228
  }
  return true;
}
L
luotao1 已提交
229 230 231
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
232 233 234 235 236 237 238 239 240 241 242 243 244 245
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
L
luotao1 已提交
246 247
  }
}
X
Xin Pan 已提交
248

249 250
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
X
Xin Pan 已提交
251
  VLOG(3) << "Predictor::get_fetch";
252 253 254
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
255 256
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
257
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
258 259 260 261 262 263 264 265
    auto type = fetch.type();
    auto output = &(outputs->at(i));
    if (type == typeid(float)) {
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
    } else if (type == typeid(int64_t)) {
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
266
    } else {
L
luotao1 已提交
267
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
268
    }
X
Xin Pan 已提交
269 270 271 272
  }
  return true;
}

273
template <>
274 275
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
Y
Yan Chunwei 已提交
276 277 278
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
279
    PADDLE_ENFORCE_GT(
280
        config.fraction_of_gpu_memory, 0.f,
Y
Yan Chunwei 已提交
281
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
282
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
283 284 285 286 287 288 289 290 291 292
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
                         num2str<float>(config.fraction_of_gpu_memory);
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
293 294
  }

Y
Yan Chunwei 已提交
295
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
296
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
297 298
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
299
#ifdef __clang__
J
Jiabin Yang 已提交
300
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
301 302
  return predictor;
#else
303
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
304
#endif
X
Xin Pan 已提交
305 306
}

Y
Yan Chunwei 已提交
307 308 309 310 311 312
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<NativeConfig>(
    const NativeConfig &config) {
  return CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
}

X
Xin Pan 已提交
313
}  // namespace paddle