test_cholesky_op.py 5.7 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci
from gradient_checker import grad_check
from decorator_helper import prog_scope


@skip_check_grad_ci(
    reason="The input of cholesky_op should always be symmetric positive-definite. "
    "However, OpTest calculates the numeric gradient of each element in input "
    "via small finite difference, which makes the input no longer symmetric "
    "positive-definite thus can not compute the Cholesky decomposition. "
    "While we can use the gradient_checker.grad_check to perform gradient "
    "check of cholesky_op, since it supports check gradient with a program "
    "and we can construct symmetric positive-definite matrices in the program")
class TestCholeskyOp(OpTest):
    def setUp(self):
        self.op_type = "cholesky"
P
update  
phlrain 已提交
39
        self.python_api = paddle.linalg.cholesky
G
Guo Sheng 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
        self._input_shape = (2, 32, 32)
        self._upper = True
        self.init_config()
        self.trans_dims = list(range(len(self._input_shape) - 2)) + [
            len(self._input_shape) - 1, len(self._input_shape) - 2
        ]
        self.root_data = np.random.random(self._input_shape).astype("float64")
        # construct symmetric positive-definite matrice
        input_data = np.matmul(
            self.root_data, self.root_data.transpose(self.trans_dims)) + 1e-05
        output_data = np.linalg.cholesky(input_data).astype("float64")
        if self._upper:
            output_data = output_data.transpose(self.trans_dims)
        self.inputs = {"X": input_data}
        self.attrs = {"upper": self._upper}
        self.outputs = {"Out": output_data}

    def test_check_output(self):
P
update  
phlrain 已提交
58
        self.check_output(check_eager=True)
G
Guo Sheng 已提交
59 60 61

    def test_check_grad(self):
        places = [fluid.CPUPlace()]
F
furnace 已提交
62
        if core.is_compiled_with_cuda() and (not core.is_compiled_with_rocm()):
G
Guo Sheng 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)

    @prog_scope()
    def func(self, place):
        # use small size since Jacobian gradients is time consuming
        root_data = self.root_data[..., :3, :3]
        prog = fluid.Program()
        with fluid.program_guard(prog):
            root = layers.create_parameter(
                dtype=root_data.dtype, shape=root_data.shape)
            root_t = layers.transpose(root, self.trans_dims)
            x = layers.matmul(x=root, y=root_t) + 1e-05
            out = paddle.cholesky(x, upper=self.attrs["upper"])
            grad_check(root, out, x_init=root_data, place=place)

    def init_config(self):
        self._upper = True


class TestCholeskyOpLower(TestCholeskyOp):
    def init_config(self):
        self._upper = False


class TestCholeskyOp2D(TestCholeskyOp):
    def init_config(self):
        self._input_shape = (64, 64)


94 95
class TestDygraph(unittest.TestCase):
    def test_dygraph(self):
F
furnace 已提交
96 97 98 99
        if core.is_compiled_with_rocm():
            paddle.disable_static(place=fluid.CPUPlace())
        else:
            paddle.disable_static()
100 101 102
        a = np.random.rand(3, 3)
        a_t = np.transpose(a, [1, 0])
        x_data = np.matmul(a, a_t) + 1e-03
Z
Zhou Wei 已提交
103
        x = paddle.to_tensor(x_data)
104 105 106
        out = paddle.cholesky(x, upper=False)


107 108 109
class TestCholeskySingularAPI(unittest.TestCase):
    def setUp(self):
        self.places = [fluid.CPUPlace()]
F
furnace 已提交
110
        if core.is_compiled_with_cuda() and (not core.is_compiled_with_rocm()):
111 112 113 114 115 116 117 118 119 120 121 122 123 124
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place, with_out=False):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[4, 4], dtype="float64")
            result = paddle.cholesky(input)

            input_np = np.zeros([4, 4]).astype("float64")

            exe = fluid.Executor(place)
            try:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": input_np},
                                  fetch_list=[result])
125 126 127 128
            except RuntimeError as ex:
                print("The mat is singular")
                pass
            except ValueError as ex:
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
                print("The mat is singular")
                pass

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                     [[10, 11, 12], [13, 14, 15],
                                      [16, 17, 18]]]).astype("float64")
                input = fluid.dygraph.to_variable(input_np)
                try:
                    result = paddle.cholesky(input)
145 146 147 148
                except RuntimeError as ex:
                    print("The mat is singular")
                    pass
                except ValueError as ex:
149 150 151 152
                    print("The mat is singular")
                    pass


G
Guo Sheng 已提交
153
if __name__ == "__main__":
154
    paddle.enable_static()
G
Guo Sheng 已提交
155
    unittest.main()