mish_op.cu 6.4 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mish_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_launch_config.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
__global__ void KeMishFw(const T* in, T* out, const int numel,
                         const float threshold) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (; tid < numel; tid += stride) {
    T x = in[tid];
    T sp = CalcSoftplus<T>(x, threshold);
    out[tid] = x * tanh(sp);
  }
}

// expf instead of exp should be used for float type, complement
// and register float kernel separatelly
__global__ void KeMishFwFP32(const float* in, float* out, const int numel,
                             const float threshold) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (; tid < numel; tid += stride) {
    float x = in[tid];
    float sp = CalcSoftplusFP32(x, threshold);
    out[tid] = x * tanhf(sp);
  }
}

template <typename T>
__global__ void KeMishBw(const T* in, const T* dout, T* din, const int numel,
                         const float threshold) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (; tid < numel; tid += stride) {
    T x = in[tid];
    T sp = CalcSoftplus<T>(x, threshold);
    T tsp = tanh(sp);
    T grad_sp = -expm1(-sp);
    T grad_tsp = (static_cast<T>(1) - tsp * tsp) * grad_sp;
    din[tid] = dout[tid] * (x * grad_tsp + tsp);
  }
}

__global__ void KeMishBwFP32(const float* in, const float* dout, float* din,
                             const int numel, const float threshold) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (; tid < numel; tid += stride) {
    float x = in[tid];
    float sp = CalcSoftplusFP32(x, threshold);
    float tsp = tanhf(sp);
    float grad_sp = -expm1f(-sp);
    float grad_tsp = (static_cast<float>(1) - tsp * tsp) * grad_sp;
    din[tid] = dout[tid] * (x * grad_tsp + tsp);
  }
}

template <typename DeviceContext, typename T>
class MishCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    const float threshold = ctx.Attr<float>("threshold");

    const T* x_data = x->data<T>();
    T* out_data = out->mutable_data<T>(ctx.GetPlace());

    const int numel = x->numel();

90 91 92
    platform::GpuLaunchConfig config =
        platform::GetGpuLaunchConfig1D(ctx.cuda_device_context(), numel);
    KeMishFw<T><<<config.block_per_grid, config.thread_per_block, 0,
K
Kaipeng Deng 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
                  ctx.cuda_device_context().stream()>>>(x_data, out_data, numel,
                                                        threshold);
  }
};

template <typename DeviceContext>
class MishFP32CUDAKernel : public framework::OpKernel<float> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    const float threshold = ctx.Attr<float>("threshold");

    const float* x_data = x->data<float>();
    float* out_data = out->mutable_data<float>(ctx.GetPlace());

    const int numel = x->numel();

112 113 114
    platform::GpuLaunchConfig config =
        platform::GetGpuLaunchConfig1D(ctx.cuda_device_context(), numel);
    KeMishFwFP32<<<config.block_per_grid, config.thread_per_block, 0,
K
Kaipeng Deng 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
                   ctx.cuda_device_context().stream()>>>(x_data, out_data,
                                                         numel, threshold);
  }
};

template <typename DeviceContext, typename T>
class MishGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto threshold = ctx.Attr<float>("threshold");

    const T* x_data = x->data<T>();
    const T* dout_data = dout->data<T>();
    T* dx_data = dx->mutable_data<T>(ctx.GetPlace());

    const int numel = x->numel();

136 137 138
    platform::GpuLaunchConfig config =
        platform::GetGpuLaunchConfig1D(ctx.cuda_device_context(), numel);
    KeMishBw<T><<<config.block_per_grid, config.thread_per_block, 0,
K
Kaipeng Deng 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
                  ctx.cuda_device_context().stream()>>>(
        x_data, dout_data, dx_data, numel, threshold);
  }
};

template <typename DeviceContext>
class MishGradFP32CUDAKernel : public framework::OpKernel<float> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto threshold = ctx.Attr<float>("threshold");

    const float* x_data = x->data<float>();
    const float* dout_data = dout->data<float>();
    float* dx_data = dx->mutable_data<float>(ctx.GetPlace());

    const int numel = x->numel();

160 161 162
    platform::GpuLaunchConfig config =
        platform::GetGpuLaunchConfig1D(ctx.cuda_device_context(), numel);
    KeMishBwFP32<<<config.block_per_grid, config.thread_per_block, 0,
K
Kaipeng Deng 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
                   ctx.cuda_device_context().stream()>>>(
        x_data, dout_data, dx_data, numel, threshold);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    mish, ops::MishFP32CUDAKernel<paddle::platform::CUDADeviceContext>,
    ops::MishCUDAKernel<paddle::platform::CUDADeviceContext, double>)
REGISTER_OP_CUDA_KERNEL(
    mish_grad, ops::MishGradFP32CUDAKernel<paddle::platform::CUDADeviceContext>,
    ops::MishGradCUDAKernel<paddle::platform::CUDADeviceContext, double>)